Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7–33.
Magen, H., Simchen, M. J., Erman, S., & Avigdor, A. (2022). Diagnosis and management of multiple myeloma during pregnancy: Case report, review of the literature, and an update on current treatments. Therapeutic Advances in Hematology, 13, 20406207211066173.
Article PubMed PubMed Central Google Scholar
Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12–49.
van de Donk, N., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397, 410–427.
Mian, H., Wildes, T. M., Vij, R., Pianko, M. J., Major, A., & Fiala, M. A. (2023). Dynamic frailty risk assessment among older adults with multiple myeloma: A population-based cohort study. Blood Cancer Journal, 13, 76.
Article PubMed PubMed Central Google Scholar
Holstein, S. A. (2022). Current frontline treatment of multiple myeloma. Oncology (Williston Park, N.Y.), 36, 430–441.
Xu, L. L., Shanmugam, N., Segawa, T., Sesterhenn, I. A., McLeod, D. G., Moul, J. W., & Srivastava, S. (2000). A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics, 66, 257–263.
Article CAS PubMed Google Scholar
Sharad, S., Dobi, A., Srivastava, S., Srinivasan, A., & Li, H. (2020). PMEPA1 gene isoforms: A potential biomarker and therapeutic target in prostate cancer. Biomolecules, 10, 1221.
Article CAS PubMed PubMed Central Google Scholar
Wen, F., Yang, S., Cai, W., Zhao, M., Qin, L., & Jiao, Z. (2023). Exploring the role of PMEPA1 in gastric cancer. Molecular and Cellular Probes, 72, 101931.
Article CAS PubMed Google Scholar
Du, Y., Liu, Y., Xu, Y., Juan, J., Zhang, Z., Xu, Z., Cao, B., Wang, Q., Zeng, Y., & Mao, X. (2018). The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor. Journal of Biological Chemistry, 293, 5847–5859.
Article CAS PubMed PubMed Central Google Scholar
Zhang, M., Zhang, Z., Tian, X., Zhang, E., Wang, Y., Tang, J., & Zhao, J. (2023). NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Frontiers in Pharmacology, 14, 1291773.
Article CAS PubMed PubMed Central Google Scholar
Xie, S., Xia, L., Song, Y., Liu, H., Wang, Z. W., & Zhu, X. (2021). Insights into the biological role of NEDD4L E3 ubiquitin ligase in human cancers. Frontiers in Oncology, 11, 774648.
Article CAS PubMed PubMed Central Google Scholar
Huang, X., Cao, W., Yao, S., Chen, J., Liu, Y., Qu, J., Li, Y., Han, X., He, J., Huang, H., Zhang, E., & Cai, Z. (2022). NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death and Disease, 13, 197.
Article CAS PubMed PubMed Central Google Scholar
Chen, K. C., Chen, P. H., Ho, K. H., Shih, C. M., Chou, C. M., Cheng, C. H., & Lee, C. C. (2019). IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One, 14, e0225913.
Article CAS PubMed PubMed Central Google Scholar
Amalia, R., Abdelaziz, M., Puteri, M. U., Hwang, J., Anwar, F., Watanabe, Y., & Kato, M. (2019). TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cellular Signalling, 59, 24–33.
Article CAS PubMed Google Scholar
Yuan, Y., Guo, M., Gu, C., & Yang, Y. (2021). The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). American Journal of Translational Research, 13, 9932–9949.
CAS PubMed PubMed Central Google Scholar
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25, 402–408.
Article CAS PubMed Google Scholar
Chen, H., Zhao, Y., Zhang, J., Xie, Y., & Jin, M. (2021). Promoting effects of MiR-135b on human multiple myeloma cells via regulation of the Wnt/β-catenin/Versican signaling pathway. Cytokine, 142, 155495.
Article CAS PubMed Google Scholar
Karbyshev, M. S., Grigoryeva, E. S., Volkomorov, V. V., Kremmer, E., Huber, A., Mitrofanova, I. V., Kaigorodova, E. V., Zavyalova, M. V., Kzhyshkowska, J. G., Cherdyntseva, N. V., & Choynzonov, E. L. (2018). Development of novel monoclonal antibodies for evaluation of transmembrane prostate androgen-induced protein 1 (TMEPAI) expression patterns in gastric cancer. Pathology Oncology Research, 24, 427–438.
Article CAS PubMed Google Scholar
Hirokawa, Y. S., Takagi, A., Uchida, K., Kozuka, Y., Yoneda, M., Watanabe, M., & Shiraishi, T. (2007). High level expression of STAG1/PMEPA1 in an androgen-independent prostate cancer PC3 subclone. Cellular & Molecular Biology Letters, 12, 370–377.
Zhu, Q., Wang, Y., Liu, Y., Yang, X., & Shuai, Z. (2023). Prostate transmembrane androgen inducible protein 1 (PMEPA1): Regulation and clinical implications. Frontiers in Oncology, 13, 1298660.
Article CAS PubMed PubMed Central Google Scholar
Ji, J., Ding, K., Luo, T., Xu, R., Zhang, X., Huang, B., Chen, A., Zhang, D., Miletic, H., Bjerkvig, R., Thorsen, F., Wang, J., & Li, X. (2020). PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1. Oncogene, 39, 1125–1139.
Article CAS PubMed Google Scholar
Itoh, S., & Itoh, F. (2018). TMEPAI family: involvement in regulation of multiple signalling pathways. Journal of Biochemistry, 164, 195–204.
Article CAS PubMed Google Scholar
Tan, B., Chen, Y., Xia, L., Yu, X., Peng, Y., Zhang, X., & Yang, Z. (2021). PMEPA1 facilitates non-small cell lung cancer progression via activating the JNK signaling pathway. Cancer Biomarkers: Section A of Disease Markers, 31, 203–210.
Article CAS PubMed Google Scholar
Song, M., Zhou, B., Li, B., & Tian, L. (2021). PMEPA1 stimulates the proliferation, colony formation of pancreatic cancer cells via the MAPK signaling pathway. The American Journal of the Medical Sciences, 362, 291–296.
Qiu, D., Hu, J., Hu, J., Yu, A., Othmane, B., He, T., Ding, J., Cheng, X., Ren, W., Tan, X., Yu, Q., Chen, J., & Zu, X. (2021). PMEPA1 is a prognostic biomarker that correlates with cell malignancy and the tumor microenvironment in bladder cancer. Frontiers in Immunology, 12, 705086.
Article CAS PubMed PubMed Central Google Scholar
Li, H., Mohamed, A. A., Sharad, S., Umeda, E., Song, Y., Young, D., Petrovics, G., McLeod, D. G., Sesterhenn, I. A., Sreenath, T., Dobi, A., & Srivastava, S. (2015). Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget, 6, 15137–15149.
Article PubMed PubMed Central Google Scholar
Blee, A. M., & Huang, H. (2016). PMEPA1 guards against TGF-β-mediated prostate cancer bone metastasis. Asian Journal of Urology, 3, 1–3.
Rae, F. K., Hooper, J. D., Nicol, D. L., & Clements, J. A. (2001). Characterization of a novel gene, STAG1/PMEPA1, upregulated in renal cell carcinoma and other solid tumors. Molecular Carcinogenesis, 32, 44–53.
Article CAS PubMed Google Scholar
Chen, H., Ross, C. A., Wang, N., Huo, Y., MacKinnon, D. F., Potash, J. B., Simpson, S. G., McMahon, F. J., DePaulo, Jr, J. R., & McInnis, M. G. (2001). NEDD4L on human chromosome 18q21 has multiple forms of transcripts and is a homologue of the mouse Nedd4-2 gene. European Journal of Human Genetics, 9, 922–930.
Comments (0)