PMEPA1 Binds NEDD4L to Inhibit the Malignant Progression of Multiple Myeloma by Inactivating Wnt/β-Catenin Signaling

Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7–33.

PubMed  Google Scholar 

Magen, H., Simchen, M. J., Erman, S., & Avigdor, A. (2022). Diagnosis and management of multiple myeloma during pregnancy: Case report, review of the literature, and an update on current treatments. Therapeutic Advances in Hematology, 13, 20406207211066173.

Article  PubMed  PubMed Central  Google Scholar 

Siegel, R. L., Giaquinto, A. N., & Jemal, A. (2024). Cancer statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12–49.

PubMed  Google Scholar 

van de Donk, N., Pawlyn, C., & Yong, K. L. (2021). Multiple myeloma. Lancet, 397, 410–427.

Article  PubMed  Google Scholar 

Mian, H., Wildes, T. M., Vij, R., Pianko, M. J., Major, A., & Fiala, M. A. (2023). Dynamic frailty risk assessment among older adults with multiple myeloma: A population-based cohort study. Blood Cancer Journal, 13, 76.

Article  PubMed  PubMed Central  Google Scholar 

Holstein, S. A. (2022). Current frontline treatment of multiple myeloma. Oncology (Williston Park, N.Y.), 36, 430–441.

PubMed  Google Scholar 

Xu, L. L., Shanmugam, N., Segawa, T., Sesterhenn, I. A., McLeod, D. G., Moul, J. W., & Srivastava, S. (2000). A novel androgen-regulated gene, PMEPA1, located on chromosome 20q13 exhibits high level expression in prostate. Genomics, 66, 257–263.

Article  CAS  PubMed  Google Scholar 

Sharad, S., Dobi, A., Srivastava, S., Srinivasan, A., & Li, H. (2020). PMEPA1 gene isoforms: A potential biomarker and therapeutic target in prostate cancer. Biomolecules, 10, 1221.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wen, F., Yang, S., Cai, W., Zhao, M., Qin, L., & Jiao, Z. (2023). Exploring the role of PMEPA1 in gastric cancer. Molecular and Cellular Probes, 72, 101931.

Article  CAS  PubMed  Google Scholar 

Du, Y., Liu, Y., Xu, Y., Juan, J., Zhang, Z., Xu, Z., Cao, B., Wang, Q., Zeng, Y., & Mao, X. (2018). The transmembrane protein TMEPAI induces myeloma cell apoptosis by promoting degradation of the c-Maf transcription factor. Journal of Biological Chemistry, 293, 5847–5859.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, M., Zhang, Z., Tian, X., Zhang, E., Wang, Y., Tang, J., & Zhao, J. (2023). NEDD4L in human tumors: regulatory mechanisms and dual effects on anti-tumor and pro-tumor. Frontiers in Pharmacology, 14, 1291773.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie, S., Xia, L., Song, Y., Liu, H., Wang, Z. W., & Zhu, X. (2021). Insights into the biological role of NEDD4L E3 ubiquitin ligase in human cancers. Frontiers in Oncology, 11, 774648.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, X., Cao, W., Yao, S., Chen, J., Liu, Y., Qu, J., Li, Y., Han, X., He, J., Huang, H., Zhang, E., & Cai, Z. (2022). NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death and Disease, 13, 197.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, K. C., Chen, P. H., Ho, K. H., Shih, C. M., Chou, C. M., Cheng, C. H., & Lee, C. C. (2019). IGF-1-enhanced miR-513a-5p signaling desensitizes glioma cells to temozolomide by targeting the NEDD4L-inhibited Wnt/β-catenin pathway. PLoS One, 14, e0225913.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amalia, R., Abdelaziz, M., Puteri, M. U., Hwang, J., Anwar, F., Watanabe, Y., & Kato, M. (2019). TMEPAI/PMEPA1 inhibits Wnt signaling by regulating β-catenin stability and nuclear accumulation in triple negative breast cancer cells. Cellular Signalling, 59, 24–33.

Article  CAS  PubMed  Google Scholar 

Yuan, Y., Guo, M., Gu, C., & Yang, Y. (2021). The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). American Journal of Translational Research, 13, 9932–9949.

CAS  PubMed  PubMed Central  Google Scholar 

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.), 25, 402–408.

Article  CAS  PubMed  Google Scholar 

Chen, H., Zhao, Y., Zhang, J., Xie, Y., & Jin, M. (2021). Promoting effects of MiR-135b on human multiple myeloma cells via regulation of the Wnt/β-catenin/Versican signaling pathway. Cytokine, 142, 155495.

Article  CAS  PubMed  Google Scholar 

Karbyshev, M. S., Grigoryeva, E. S., Volkomorov, V. V., Kremmer, E., Huber, A., Mitrofanova, I. V., Kaigorodova, E. V., Zavyalova, M. V., Kzhyshkowska, J. G., Cherdyntseva, N. V., & Choynzonov, E. L. (2018). Development of novel monoclonal antibodies for evaluation of transmembrane prostate androgen-induced protein 1 (TMEPAI) expression patterns in gastric cancer. Pathology Oncology Research, 24, 427–438.

Article  CAS  PubMed  Google Scholar 

Hirokawa, Y. S., Takagi, A., Uchida, K., Kozuka, Y., Yoneda, M., Watanabe, M., & Shiraishi, T. (2007). High level expression of STAG1/PMEPA1 in an androgen-independent prostate cancer PC3 subclone. Cellular & Molecular Biology Letters, 12, 370–377.

Article  CAS  Google Scholar 

Zhu, Q., Wang, Y., Liu, Y., Yang, X., & Shuai, Z. (2023). Prostate transmembrane androgen inducible protein 1 (PMEPA1): Regulation and clinical implications. Frontiers in Oncology, 13, 1298660.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ji, J., Ding, K., Luo, T., Xu, R., Zhang, X., Huang, B., Chen, A., Zhang, D., Miletic, H., Bjerkvig, R., Thorsen, F., Wang, J., & Li, X. (2020). PMEPA1 isoform a drives progression of glioblastoma by promoting protein degradation of the Hippo pathway kinase LATS1. Oncogene, 39, 1125–1139.

Article  CAS  PubMed  Google Scholar 

Itoh, S., & Itoh, F. (2018). TMEPAI family: involvement in regulation of multiple signalling pathways. Journal of Biochemistry, 164, 195–204.

Article  CAS  PubMed  Google Scholar 

Tan, B., Chen, Y., Xia, L., Yu, X., Peng, Y., Zhang, X., & Yang, Z. (2021). PMEPA1 facilitates non-small cell lung cancer progression via activating the JNK signaling pathway. Cancer Biomarkers: Section A of Disease Markers, 31, 203–210.

Article  CAS  PubMed  Google Scholar 

Song, M., Zhou, B., Li, B., & Tian, L. (2021). PMEPA1 stimulates the proliferation, colony formation of pancreatic cancer cells via the MAPK signaling pathway. The American Journal of the Medical Sciences, 362, 291–296.

Article  PubMed  Google Scholar 

Qiu, D., Hu, J., Hu, J., Yu, A., Othmane, B., He, T., Ding, J., Cheng, X., Ren, W., Tan, X., Yu, Q., Chen, J., & Zu, X. (2021). PMEPA1 is a prognostic biomarker that correlates with cell malignancy and the tumor microenvironment in bladder cancer. Frontiers in Immunology, 12, 705086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Mohamed, A. A., Sharad, S., Umeda, E., Song, Y., Young, D., Petrovics, G., McLeod, D. G., Sesterhenn, I. A., Sreenath, T., Dobi, A., & Srivastava, S. (2015). Silencing of PMEPA1 accelerates the growth of prostate cancer cells through AR, NEDD4 and PTEN. Oncotarget, 6, 15137–15149.

Article  PubMed  PubMed Central  Google Scholar 

Blee, A. M., & Huang, H. (2016). PMEPA1 guards against TGF-β-mediated prostate cancer bone metastasis. Asian Journal of Urology, 3, 1–3.

Article  PubMed  Google Scholar 

Rae, F. K., Hooper, J. D., Nicol, D. L., & Clements, J. A. (2001). Characterization of a novel gene, STAG1/PMEPA1, upregulated in renal cell carcinoma and other solid tumors. Molecular Carcinogenesis, 32, 44–53.

Article  CAS  PubMed  Google Scholar 

Chen, H., Ross, C. A., Wang, N., Huo, Y., MacKinnon, D. F., Potash, J. B., Simpson, S. G., McMahon, F. J., DePaulo, Jr, J. R., & McInnis, M. G. (2001). NEDD4L on human chromosome 18q21 has multiple forms of transcripts and is a homologue of the mouse Nedd4-2 gene. European Journal of Human Genetics, 9, 922–930.

Article  CAS  PubMed 

Comments (0)

No login
gif