Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233. https://doi.org/10.3390/biom12111560.
Article CAS PubMed PubMed Central Google Scholar
Gurtan, A. M., & Sharp, P. A. (2013). The role of miRNAs in regulating gene expression networks. Journal of Molecular Biology, 425, 3582–3600. https://doi.org/10.1016/j.jmb.2013.03.007.
Article CAS PubMed PubMed Central Google Scholar
Wojciechowska, A., Braniewska, A., & Kozar-Kamińska, K. (2017). MicroRNA in cardiovascular biology and disease. Advances in Clinical & Experimental Medicine, 26, 865–874. https://doi.org/10.17219/acem/62915.
Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379. https://doi.org/10.1146/annurev-biochem-060308-103103.
Article CAS PubMed Google Scholar
Conti, I., Varano, G., Simioni, C., Laface, I., Milani, D., Rimondi, E., & Neri, L. M. (2020). miRNAs as influencers of cell–cell communication in tumor microenvironment. Cells, 9, 220. https://doi.org/10.3390/cells9010220.
Article CAS PubMed PubMed Central Google Scholar
Vijayan, M., & Reddy, P. H. (2016). Peripheral biomarkers of stroke: Focus on circulatory microRNAs. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1862, 1984–1993. https://doi.org/10.1016/j.bbadis.2016.08.003.
Article CAS PubMed Google Scholar
Meng, L., Chen, Z., Jiang, Z., Huang, T., Hu, J., Luo, P., Zhang, H., Huang, M., Huang, L., Chen, Y., Lu, M., Xu, A. M., & Ying, S. (2020). MiR-122-5p suppresses the proliferation, migration, and invasion of gastric cancer cells by targeting LYN. Acta Biochimica et Biophysica Sinica, 52, 49–57. https://doi.org/10.1016/j.aqrep.2020.100401.
Article CAS PubMed Google Scholar
Ding, Z., Lin, J., Sun, Y., Cong, S., Liu, S., Zhang, Y., Chen, Q., & Chen, J. (2020). miR‐122‐5p negatively regulates the transforming growth factor‐β/Smad signaling pathway in skeletal muscle myogenesis. Cell Biochemistry and Function, 38, 231–238. https://doi.org/10.1002/cbf.3460.
Article CAS PubMed Google Scholar
Yang, Z., Wu, W., Ou, P., Wu, M., Zeng, F., Zhou, B., & Wu, S. (2021). MiR-122-5p knockdown protects against APAP-mediated liver injury through up-regulating NDRG3. Molecular and Cellular Biochemistry, 476, 1257–1267. https://doi.org/10.1007/s11010-020-03988-0.
Article CAS PubMed Google Scholar
Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., Watts, L., Booten, S. L., Graham, M., & McKay, R. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 3, 87–98. https://doi.org/10.1016/j.cmet.2006.01.005.
Article CAS PubMed Google Scholar
Ge, Y., Tu, W., Li, J., Chen, X., Chen, Y., Xu, Y., Xu, Y., Wang, Y., & Liu, Y. (2020). MiR-122-5p increases radiosensitivity and aggravates radiation-induced rectal injury through CCAR1. Toxicology and Applied Pharmacology, 399, 115054. https://doi.org/10.1016/j.taap.2020.115054.
Article CAS PubMed Google Scholar
Lu, Z., Feng, H., Shen, X., He, R., Meng, H., Lin, W., & Geng, Q. (2020). MiR-122-5p protects against acute lung injury via regulation of DUSP4/ERK signaling in pulmonary microvascular endothelial cells. Life Sciences, 256, 117851. https://doi.org/10.1016/j.lfs.2020.117851.
Article CAS PubMed Google Scholar
Hsu, S.-h, Wang, B., Kota, J., Yu, J., Costinean, S., Kutay, H., Yu, L., Bai, S., La Perle, K., & Chivukula, R. R. (2012). Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation, 122, 2871–2883. https://doi.org/10.1172/JCI63539.
Article CAS PubMed PubMed Central Google Scholar
Al-Gazally, M. E., Khan, R., Imran, M., Ramírez-Coronel, A. A., Alshahrani, S. H., Altalbawy, F. M., Jalil, A. T., Romero-Parra, R. M., Zabibah, R. S., & Iqbal, M. S. (2023). The role and mechanism of action of microRNA-122 in cancer: focusing on the liver. International Immunopharmacology, 123, 110713. https://doi.org/10.1016/j.intimp.2023.110713.
Article CAS PubMed Google Scholar
Abdel-Wahab, A.-H. A., Effat, H., Mahrous, E. A., Ali, M. A., & Al-Shafie, T. A. (2021). A licorice roots extract induces apoptosis and cell cycle arrest and improves metabolism via regulating MiRNAs in liver cancer cells. Nutrition and Cancer, 73, 1047–1058. https://doi.org/10.1080/01635581.2020.1783329.
Article CAS PubMed Google Scholar
Ismail, A., El-Mahdy, H. A., Eldeib, M. G., & Doghish, A. S. (2023). miRNAs as cornerstones in diabetic microvascular complications. Molecular Genetics and Metabolism, 138, 106978. https://doi.org/10.1016/j.ymgme.2022.106978.
Article CAS PubMed Google Scholar
Yu, N., Tian, W., Liu, C., Zhang, P., Zhao, Y., Nan, C., Jin, Q., Li, X., & Liu, Y. (2023). miR-122-5p Promotes peripheral and central nervous system inflammation in a mouse model of intracerebral hemorrhage via disruption of the MLLT1/PI3K/AKT signaling. Neurochemical Research, 48, 3665–3682. https://doi.org/10.1007/s11064-023-04014-7.
Article CAS PubMed Google Scholar
Zhou, X. M., Liu, J., Wang, Y., & Zhang, M. H. (2019). Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p. Journal of Cellular Biochemistry, 120, 7978–7988. https://doi.org/10.1002/jcb.28075.
Article CAS PubMed Google Scholar
Zhao, J., He, L., & Yin, L. (2020). lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. Molecular Therapy Nucleic Acids, 20, 117–127. https://doi.org/10.1016/j.omtn.2020.01.009.
Article CAS PubMed PubMed Central Google Scholar
Lin, J., & Zheng, X. (2017). Salvianolate blocks apoptosis during myocardial infarction by down regulating miR-122-5p. Current Neurovascular Research, 14, 323–329. https://doi.org/10.2174/1567202614666171026114630.
Article CAS PubMed Google Scholar
Li, X., Zhang, J., Liu, G., Wu, G., Wang, R., & Zhang, J. (2024). High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sciences, 336, 122319. https://doi.org/10.1016/j.lfs.2023.122319.
Article CAS PubMed Google Scholar
Harukuni, I., & Bhardwaj, A. (2006). Mechanisms of brain injury after global cerebral ischemia. Neurologic Clinics, 24, 1–21. https://doi.org/10.1016/j.ncl.2005.10.004.
Fishbein G. A., Fishbein M. C., Wang J., Buja L. M. (2022) Myocardial ischemia and its complications. In: Cardiovascular pathology. Elsevier. pp. 407-445.
Dong, Z., Jia, L., Han, W., Wang, Y., Sheng, M., Ren, Y., Weng, Y., Li, H., & Yu, W. (2023). The protective effect of lncRNA NEAT1/miR-122-5p/Wnt1 axis on hippocampal damage in hepatic ischemic reperfusion young mice. Cellular Signalling, 107, 110668. https://doi.org/10.1016/j.cellsig.2023.110668.
Article CAS PubMed Google Scholar
Jawad, S. F., Altalbawy, F. M. A., Hussein, R. M., Fadhil, A. A., Jawad, M. A., Zabibah, R. S., Taraki, T. Y., Mohan, C. D., & Rangappa, K. S. (2024). The strict regulation of HIF-1α by non-coding RNAs: new insight towards proliferation, metastasis, and therapeutic resistance strategies. Cancer Metastasis Reviews, 43, 5–27. https://doi.org/10.1007/s10555-023-10129-8.
Article CAS PubMed Google Scholar
Csak, T., Bala, S., Lippai, D., Satishchandran, A., Catalano, D., Kodys, K., & Szabo, G. (2015). micro RNA‐122 regulates hypoxia‐inducible factor‐1 and vimentin in hepatocytes and correlates with fibrosis in diet‐induced steatohepatitis. Liver International, 35, 532–541. https://doi.org/10.1111/liv.12633.
Article CAS PubMed Google Scholar
Feng, W., Ying, Z., Ke, F., & Mei-Lin, X. (2021). Apigenin suppresses TGF-β1-induced cardiac fibroblast differentiation and collagen synthesis through the downregulation of HIF-1α expression by miR-122-5p. Phytomedicine, 83, 153481. https://doi.org/10.1016/j.phymed.2021.153481.
Comments (0)