sPLA2-IB and PLA2R Mediate Aberrant Glucose Metabolism in Podocytes via Hyperactivation of the mTOR/HIF-1α Pathway

Avasare, R., Andeen, N. & Beck, L. (2023). Novel antigens and clinical updates in membranous nephropathy. Annual Review of Medicine, 75, 219–332.

Article  PubMed  Google Scholar 

Yagami, T., Yamamoto, Y., & Koma, H. (2014). The role of secretory phospholipase a(2) in the central nervous system and neurological diseases. Molecular Neurobiology, 49(2), 863–876.

Article  PubMed  CAS  Google Scholar 

Li, W., Zhang, M., Guo, Y., Liu, X., Ji, X., Su, J., Zhang, Z., & Zhang, F. (2018). Serum secretory phospholipase a2 group ib correlates with the severity of membranous nephropathy. Clinica Chimica Acta, 482, 178–184.

Article  CAS  Google Scholar 

Pan, Y., Wan, J., Liu, Y., Yang, Q., Liang, W., Singhal, P. C., Saleem, M. A., & Ding, G. (2014). Spla2 ib induces human podocyte apoptosis via the m-type phospholipase a2 receptor. Scientific Reports, 4, 6660.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yuan, Q., Miao, J., Yang, Q., Fang, L., Fang, Y., Ding, H., Zhou, Y., Jiang, L., Dai, C., Zen, K., Sun, Q., & Yang, J. (2020). Role of pyruvate kinase m2-mediated metabolic reprogramming during podocyte differentiation. Cell Death & Disease, 11(5), 355.

Article  CAS  Google Scholar 

Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J. X., Wang, Z., & Yu, T. (2022). Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy, 7(1), 305.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Martinez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial tca cycle metabolites control physiology and disease. Nature Communications, 11(1), 102.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Vander, H. M., Cantley, L. C., & Thompson, C. B. (2009). Understanding the warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

Article  Google Scholar 

Podrini, C., Rowe, I., Pagliarini, R., Costa, A., Chiaravalli, M., Di Meo, I., Kim, H., Distefano, G., Tiranti, V., Qian, F., di Bernardo, D., Frezza, C., & Boletta, A. (2018). Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Communications Biology, 1, 194.

Article  PubMed  PubMed Central  Google Scholar 

Sas, K. M., Kayampilly, P., Byun, J., Nair, V., Hinder, L. M., Hur, J., Zhang, H., Lin, C., Qi, N. R., Michailidis, G., Groop, P. H., Nelson, R. G., Darshi, M., Sharma, K., Schelling, J. R., Sedor, J. R., Pop-Busui, R., Weinberg, J. M., Soleimanpour, S. A., & Pennathur, S. (2016). Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. Jci Insight, 1(15), e86976.

Article  PubMed  PubMed Central  Google Scholar 

Li, J., Sun, Y., Chen, W., Fan, J., Li, S., Qu, X., Chen, Q., Chen, R., Zhu, D., Zhang, J., Wu, Z., Chi, H., Crawford, S., Oorschot, V., Puelles, V. G., Kerr, P. G., Ren, Y., Nilsson, S. K., Christian, M., & Yu, X. (2020). Smad4 promotes diabetic nephropathy by modulating glycolysis and oxphos. Embo Reports, 21(2), e48781.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Huynh, C., Ryu, J., Lee, J., Inoki, A., & Inoki, K. (2023). Nutrient-sensing mtorc1 and ampk pathways in chronic kidney diseases. Nature Reviews Nephrology, 19(2), 102–122.

Article  PubMed  CAS  Google Scholar 

Mao, Z., & Zhang, W. (2018). Role of mtor in glucose and lipid metabolism. International Journal of Molecular Sciences, 19(7), 2043.

Article  PubMed  PubMed Central  Google Scholar 

Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2004). Rictor, a novel binding partner of mtor, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14(14), 1296–1302.

Article  PubMed  CAS  Google Scholar 

Szwed, A., Kim, E., & Jacinto, E. (2021). Regulation and metabolic functions of mtorc1 and mtorc2. Physiological Reviews, 101(3), 1371–1426.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yang, L., Wu, Y., Lin, S., Dai, B., Chen, H., Tao, X., Li, G., Wan, J., & Pan, Y. (2021). Spla2-ib and pla2r mediate insufficient autophagy and contribute to podocyte injury in idiopathic membranous nephropathy by activation of the p38mapk/mtor/ulk1(ser757) signaling pathway. Faseb Journal, 35(2), e21170.

Article  PubMed  CAS  Google Scholar 

Li, Y., Sha, Z., & Peng, H. (2021). Metabolic reprogramming in kidney diseases: evidence and therapeutic opportunities. International Journal of Nephrology, 2021, 5497346.

Article  PubMed  PubMed Central  Google Scholar 

Ma, M., Pan, Y., Zhang, Y., Yang, M., Xi, Y., Lin, B., Hao, W., Liu, J., Wu, L., Liu, Y., & Qin, X. (2023). Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the ampk/mtor signaling pathway. Journal of Cell Communication and Signaling, 17(4), 1405–1415.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hu, Y., Mai, W., Chen, L., Cao, K., Zhang, B., Zhang, Z., Liu, Y., Lou, H., Duan, S., & Gao, Z. (2020). Mtor-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and atp. Glia, 68(5), 1031–1045.

Article  PubMed  Google Scholar 

Chiou, T. T., Chau, Y. Y., Chen, J. B., Hsu, H. H., Hung, S. P., & Lee, W. C. (2021). Rapamycin attenuates pla2r activation-mediated podocyte apoptosis via the pi3k/akt/mtor pathway. Biomedicine & Pharmacotherapy, 144, 112349.

Article  CAS  Google Scholar 

Badoiu, S. C., Greabu, M., Miricescu, D., Stanescu-Spinu, I. I., Ilinca, R., Balan, D. G., Balcangiu-Stroescu, A. E., Mihai, D. A., Vacaroiu, I. A., Stefani, C., & Jinga, V. (2023). Pi3k/akt/mtor dysregulation and reprogramming metabolic pathways in renal cancer: crosstalk with the vhl/hif axis. International Journal of Molecular Sciences, 24(9), 8391.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kang, M., Lee, S. M., Kim, W., Lee, K. H., & Kim, D. Y. (2019). Fubp1 supports the lactate-akt-mtor axis through the upregulation of hk1 and hk2. Biochemical and Biophysical Research Communications, 512(1), 93–99.

Article  PubMed  CAS  Google Scholar 

Magaway, C., Kim, E., & Jacinto, E. (2019). Targeting mtor and metabolism in cancer: lessons and innovations. Cells, 8(12), 1584.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ye, Q., Lan, B., Liu, H., Persson, P. B., Lai, E. Y., & Mao, J. (2022). A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiologica, 235(4), e13850.

Article  PubMed  CAS  Google Scholar 

Blaine, J., & Dylewski, J. (2020). Regulation of the actin cytoskeleton in podocytes. Cells, 9(7), 1700.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Faubert, B., Solmonson, A., & DeBerardinis, R. J. (2020). Metabolic reprogramming and cancer progression. Science, 368(6487), eaaw5473.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fukushi, A., Kim, H. D., Chang, Y. C., & Kim, C. H. (2022). Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. International Journal of Molecular Sciences, 23(17), 10037.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cheng, S. C., Quintin, J., Cramer, R. A., Shepardson, K. M., Saeed, S., Kumar, V., Giamarellos-Bourboulis, E. J., Martens, J. H., Rao, N. A., Aghajanirefah, A., Manjeri, G. R., Li, Y., Ifrim, D. C., Arts, R. J., van der Veer, B. M., Deen, P. M., Logie, C., O’Neill, L. A., Willems, P., & Netea, M. G. (2014). Mtor- and hif-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 345(6204), 1250684.

Article  PubMed  PubMed Central  Google Scholar 

Xue, K. H., Jiang, Y. F., Bai, J. Y., Zhang, D. Z., Chen, Y. H., Ma, J. B., Zhu, Z. J., Wang, X., & Guo, P. (2023). Melatonin suppresses akt/mtor/s6k activity, induces cell apoptosis, and synergistically inhibits cell growth with sunitinib in renal carcinoma cells via reversing warburg effect. Redox Report, 28(1), 2251234.

Article 

Comments (0)

No login
gif