Avasare, R., Andeen, N. & Beck, L. (2023). Novel antigens and clinical updates in membranous nephropathy. Annual Review of Medicine, 75, 219–332.
Yagami, T., Yamamoto, Y., & Koma, H. (2014). The role of secretory phospholipase a(2) in the central nervous system and neurological diseases. Molecular Neurobiology, 49(2), 863–876.
Article PubMed CAS Google Scholar
Li, W., Zhang, M., Guo, Y., Liu, X., Ji, X., Su, J., Zhang, Z., & Zhang, F. (2018). Serum secretory phospholipase a2 group ib correlates with the severity of membranous nephropathy. Clinica Chimica Acta, 482, 178–184.
Pan, Y., Wan, J., Liu, Y., Yang, Q., Liang, W., Singhal, P. C., Saleem, M. A., & Ding, G. (2014). Spla2 ib induces human podocyte apoptosis via the m-type phospholipase a2 receptor. Scientific Reports, 4, 6660.
Article PubMed PubMed Central CAS Google Scholar
Yuan, Q., Miao, J., Yang, Q., Fang, L., Fang, Y., Ding, H., Zhou, Y., Jiang, L., Dai, C., Zen, K., Sun, Q., & Yang, J. (2020). Role of pyruvate kinase m2-mediated metabolic reprogramming during podocyte differentiation. Cell Death & Disease, 11(5), 355.
Li, X., Yang, Y., Zhang, B., Lin, X., Fu, X., An, Y., Zou, Y., Wang, J. X., Wang, Z., & Yu, T. (2022). Lactate metabolism in human health and disease. Signal Transduction and Targeted Therapy, 7(1), 305.
Article PubMed PubMed Central CAS Google Scholar
Martinez-Reyes, I., & Chandel, N. S. (2020). Mitochondrial tca cycle metabolites control physiology and disease. Nature Communications, 11(1), 102.
Article PubMed PubMed Central CAS Google Scholar
Vander, H. M., Cantley, L. C., & Thompson, C. B. (2009). Understanding the warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.
Podrini, C., Rowe, I., Pagliarini, R., Costa, A., Chiaravalli, M., Di Meo, I., Kim, H., Distefano, G., Tiranti, V., Qian, F., di Bernardo, D., Frezza, C., & Boletta, A. (2018). Dissection of metabolic reprogramming in polycystic kidney disease reveals coordinated rewiring of bioenergetic pathways. Communications Biology, 1, 194.
Article PubMed PubMed Central Google Scholar
Sas, K. M., Kayampilly, P., Byun, J., Nair, V., Hinder, L. M., Hur, J., Zhang, H., Lin, C., Qi, N. R., Michailidis, G., Groop, P. H., Nelson, R. G., Darshi, M., Sharma, K., Schelling, J. R., Sedor, J. R., Pop-Busui, R., Weinberg, J. M., Soleimanpour, S. A., & Pennathur, S. (2016). Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications. Jci Insight, 1(15), e86976.
Article PubMed PubMed Central Google Scholar
Li, J., Sun, Y., Chen, W., Fan, J., Li, S., Qu, X., Chen, Q., Chen, R., Zhu, D., Zhang, J., Wu, Z., Chi, H., Crawford, S., Oorschot, V., Puelles, V. G., Kerr, P. G., Ren, Y., Nilsson, S. K., Christian, M., & Yu, X. (2020). Smad4 promotes diabetic nephropathy by modulating glycolysis and oxphos. Embo Reports, 21(2), e48781.
Article PubMed PubMed Central CAS Google Scholar
Huynh, C., Ryu, J., Lee, J., Inoki, A., & Inoki, K. (2023). Nutrient-sensing mtorc1 and ampk pathways in chronic kidney diseases. Nature Reviews Nephrology, 19(2), 102–122.
Article PubMed CAS Google Scholar
Mao, Z., & Zhang, W. (2018). Role of mtor in glucose and lipid metabolism. International Journal of Molecular Sciences, 19(7), 2043.
Article PubMed PubMed Central Google Scholar
Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., Tempst, P., & Sabatini, D. M. (2004). Rictor, a novel binding partner of mtor, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14(14), 1296–1302.
Article PubMed CAS Google Scholar
Szwed, A., Kim, E., & Jacinto, E. (2021). Regulation and metabolic functions of mtorc1 and mtorc2. Physiological Reviews, 101(3), 1371–1426.
Article PubMed PubMed Central CAS Google Scholar
Yang, L., Wu, Y., Lin, S., Dai, B., Chen, H., Tao, X., Li, G., Wan, J., & Pan, Y. (2021). Spla2-ib and pla2r mediate insufficient autophagy and contribute to podocyte injury in idiopathic membranous nephropathy by activation of the p38mapk/mtor/ulk1(ser757) signaling pathway. Faseb Journal, 35(2), e21170.
Article PubMed CAS Google Scholar
Li, Y., Sha, Z., & Peng, H. (2021). Metabolic reprogramming in kidney diseases: evidence and therapeutic opportunities. International Journal of Nephrology, 2021, 5497346.
Article PubMed PubMed Central Google Scholar
Ma, M., Pan, Y., Zhang, Y., Yang, M., Xi, Y., Lin, B., Hao, W., Liu, J., Wu, L., Liu, Y., & Qin, X. (2023). Metformin combined with rapamycin ameliorates podocyte injury in idiopathic membranous nephropathy through the ampk/mtor signaling pathway. Journal of Cell Communication and Signaling, 17(4), 1405–1415.
Article PubMed PubMed Central CAS Google Scholar
Hu, Y., Mai, W., Chen, L., Cao, K., Zhang, B., Zhang, Z., Liu, Y., Lou, H., Duan, S., & Gao, Z. (2020). Mtor-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and atp. Glia, 68(5), 1031–1045.
Chiou, T. T., Chau, Y. Y., Chen, J. B., Hsu, H. H., Hung, S. P., & Lee, W. C. (2021). Rapamycin attenuates pla2r activation-mediated podocyte apoptosis via the pi3k/akt/mtor pathway. Biomedicine & Pharmacotherapy, 144, 112349.
Badoiu, S. C., Greabu, M., Miricescu, D., Stanescu-Spinu, I. I., Ilinca, R., Balan, D. G., Balcangiu-Stroescu, A. E., Mihai, D. A., Vacaroiu, I. A., Stefani, C., & Jinga, V. (2023). Pi3k/akt/mtor dysregulation and reprogramming metabolic pathways in renal cancer: crosstalk with the vhl/hif axis. International Journal of Molecular Sciences, 24(9), 8391.
Article PubMed PubMed Central CAS Google Scholar
Kang, M., Lee, S. M., Kim, W., Lee, K. H., & Kim, D. Y. (2019). Fubp1 supports the lactate-akt-mtor axis through the upregulation of hk1 and hk2. Biochemical and Biophysical Research Communications, 512(1), 93–99.
Article PubMed CAS Google Scholar
Magaway, C., Kim, E., & Jacinto, E. (2019). Targeting mtor and metabolism in cancer: lessons and innovations. Cells, 8(12), 1584.
Article PubMed PubMed Central CAS Google Scholar
Ye, Q., Lan, B., Liu, H., Persson, P. B., Lai, E. Y., & Mao, J. (2022). A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiologica, 235(4), e13850.
Article PubMed CAS Google Scholar
Blaine, J., & Dylewski, J. (2020). Regulation of the actin cytoskeleton in podocytes. Cells, 9(7), 1700.
Article PubMed PubMed Central CAS Google Scholar
Faubert, B., Solmonson, A., & DeBerardinis, R. J. (2020). Metabolic reprogramming and cancer progression. Science, 368(6487), eaaw5473.
Article PubMed PubMed Central CAS Google Scholar
Fukushi, A., Kim, H. D., Chang, Y. C., & Kim, C. H. (2022). Revisited metabolic control and reprogramming cancers by means of the warburg effect in tumor cells. International Journal of Molecular Sciences, 23(17), 10037.
Article PubMed PubMed Central CAS Google Scholar
Cheng, S. C., Quintin, J., Cramer, R. A., Shepardson, K. M., Saeed, S., Kumar, V., Giamarellos-Bourboulis, E. J., Martens, J. H., Rao, N. A., Aghajanirefah, A., Manjeri, G. R., Li, Y., Ifrim, D. C., Arts, R. J., van der Veer, B. M., Deen, P. M., Logie, C., O’Neill, L. A., Willems, P., & Netea, M. G. (2014). Mtor- and hif-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 345(6204), 1250684.
Article PubMed PubMed Central Google Scholar
Xue, K. H., Jiang, Y. F., Bai, J. Y., Zhang, D. Z., Chen, Y. H., Ma, J. B., Zhu, Z. J., Wang, X., & Guo, P. (2023). Melatonin suppresses akt/mtor/s6k activity, induces cell apoptosis, and synergistically inhibits cell growth with sunitinib in renal carcinoma cells via reversing warburg effect. Redox Report, 28(1), 2251234.
Comments (0)