Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochimica et Biophysica Acta, 23, 394–401. https://doi.org/10.1016/0006-3002(57)90343-8.
Article PubMed CAS Google Scholar
Wood, E. H., & Moe, G. K. (1938). Studies on the effect of digitalis glycosides on potassium ion loss from the heart. American Journal of Physiology, 123, 219–220.
Schatzmann, H. J. (1953). Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helvetica Physiologica et Pharmacological Acta, 11, 346–354.
Skou, J. C. (1960). Further investigation on a Mg2+ + Na+-activated adenosinetriphosphatase possibly related to the active transport of Na+ and K+ across the nerve cell membrane. Biochimica et Biophysica Acta, 42, 6–23. https://doi.org/10.1016/0006-3002(60)90746-0.
Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., Kowarski, A. A., & Blaustein, M. P. (1982). A circulating inhibitor of (Na++K+)ATPase associated with essential hypertension. Nature, 300, 650–652. https://doi.org/10.1038/300650a0.
Article PubMed CAS Google Scholar
Hamlyn, J. M., Blaustein, M. P., Bova, S., DuCharme, D. W., Harris, D. W., Mandel, F., Mathews, W. R., & Ludens, J. H. (1991). Identification and characterization of a ouabain-like compound from human plasma. Proceedingsof the Naional Academy of Sciences, USA, 88, 6259–6263. https://doi.org/10.1073/pnas.88.14.6259.
Clausen, M. V., Hilbers, F., & Poulsen, H. (2017). The structure and function of the Na,K-ATPase isoforms in health and disease. Frontiers in Physiology, 18, 371 https://doi.org/10.3389/fphys.2017.00371.
Pivovarov, A. S., Calahorro, F., & Walker, R. J. (2018). Na+/K+-pump and neurotransmitter membrane receptors. Invertebrate Neuroscience, 19(1), 1 https://doi.org/10.1007/s10158-018-0221-7.
Article PubMed PubMed Central CAS Google Scholar
Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145. https://doi.org/10.1097/00004647-200110000-00001.
Mercer, R. W., Biemesderfer, D., Bliss, D. P., Collins, J. H., & Forbush, B. (1993). Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. Journal of Cell Biology, 121(3), 579–586. https://doi.org/10.1083/jcb.121.3.579.
Article PubMed CAS Google Scholar
Bibert, S., Liu, C. C., Figtree, G. A., Garcia, A., Hamilton, E. J., Marassi, F. M., Sweadner, K. J., Cornelius, F., Geering, K., & Rasmussen, H. H. (2011). FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. Journal of Biological Chemistry, 286(21), 18562–18572. https://doi.org/10.1074/jbc.M110.184101.
Article PubMed PubMed Central CAS Google Scholar
Blanco, G., & Mercer, R. W. (1998). Isozymes of the Na/K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology, 275, F633–F650. https://doi.org/10.1152/ajprenal.1998.275.5.F633.
Article PubMed CAS Google Scholar
Sweadner, K. J., & Rael, E. (2000). The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics, 68, 41–56. https://doi.org/10.1006/geno.2000.6274.
Article PubMed CAS Google Scholar
Adams, R. J., Schwartz, A., Grupp, G., Grupp, I., Lee, S. W., Wallick, E. T., Powell, T., Twist, V. W., & Gathiram, P. (1982). High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature, 296, 167–169. https://doi.org/10.1038/296167a0.
Article PubMed CAS Google Scholar
Albers, R. W. (1967). Biochemical aspects of active transport. Annual Review of Biochemistry, 36, 727–756. https://doi.org/10.1146/annurev.bi.36.070167.003455.
Article PubMed CAS Google Scholar
Post, R. L., Hegyvary, C., & Kume, S. (1972). Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. Journal of Biological Chemistry, 247, 6530–6540.
Article PubMed CAS Google Scholar
Jørgensen, P. L. (1986). Structure, function and regulation of Na,K-ATPase in the kidney. Kidney International, 29, 10–20. https://doi.org/10.1038/ki.1986.3.
Leladze, M., Nozadze, E., Chkadua, G., & Kometiani, Z. (2001). The K+-activation of the Mg-dependent cycle of Na,K-ATPase. JBPC, Journal of Biological Chemistry, 1, 76–80.
Chkadua, G., Nozadze, E., Leladze, M., & Kometiani, Z. (2002). Activation mechanism of the Na,K-ATPase system at the excess of Mg2+. JBPC, Journal of Biological Chemistry, 1/2, 19–24.
Gao, H., Popescu, R., Kopp, B., & Wang, Z. (2011). Bufadienolides and their antitumor activity. Natural Products Reports, 28, 953–969. https://doi.org/10.1039/c0np00032a.
Ziff, O. J., & Kotecha, D. (2016). Digoxin: the good and the bad. Trends Cardiovascular Medicine, 26, 585–595. https://doi.org/10.1016/j.tcm.2016.03.011.
Szent-Gyorgyi, A. (1953). Chemical physiology of contraction in body and heart muscle. New York: Academic Press.
Bagrov, A. Y., Shapiro, J. I., & Fedorova, O. V. (2009). Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacological Reviews, 61, 9–38. https://doi.org/10.1124/pr.108.000711.
Article PubMed PubMed Central CAS Google Scholar
Rodrigues-Mascarenhas, S., Da Silva de Oliveira, A., Amoedo, N. D., Affonso-Mitidieri, O. R., Rumjanek, F. D., & Rumjanek, V. M. (2009). Modulation of the immune system by ouabain. Annals of New York Academy of Sciences, 1153, 153–163. https://doi.org/10.1111/j.1749-6632.2008.03969.x.
Aperia, A., Akkuratov, E. E., Fontana, J. M., & Brismar, H. (2016). Na+-K+- ATPase, a new class of plasma membrane receptors. American Journal of Physiology - Cell Physiology, 310, C491–C495. https://doi.org/10.1152/ajpcell.00359.2015.
Hamlyn, J. M., & Blaustein, M. P. (2013). Salt sensitivity, endogenous ouabain and hypertension. Current Opinion in Nephrology and Hypertension, 22, 51–58. https://doi.org/10.1097/MNH.0b013e32835b36ec.
Article PubMed PubMed Central CAS Google Scholar
Blaustein, M. P., Chen, L., Hamlyn, J. M., Leenen, F. H., Lingrel, J. B., & Wier, W. G. (2016). Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. Journal of Physiology, 594, 6079–6103. https://doi.org/10.1113/JP272419.
Article PubMed PubMed Central CAS Google Scholar
Xie, Z., & Askari, A. (2002). Na+/K+-ATPase as a signal transducer. European Journal of Biochemistry, 269, 2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x.
Article PubMed CAS Google Scholar
Xie, Z., & Cai, T. (2003). Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Molecular Interventions, 3, 157–168. https://doi.org/10.1124/mi.3.3.157.
Article PubMed CAS Google Scholar
Aperia, A. (2007). New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. Journal of International Medicine, 261, 44–52. https://doi.org/10.1111/j.1365-2796.2006.01745.x.
Burns, E. L., Nicholas, R. A., & Price, E. M. (1996). Random mutagenesis of the sheep Na,K-ATPase α1 subunit generating the ouabain-resistant mutant L793P. J. Biological Chemistry, 271, 15879–15883. https://doi.org/10.1074/jbc.271.27.15879.
Comments (0)