Cytochrome c and Ouabain Binding Site of Na,K-ATPase

Skou, J. C. (1957). The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochimica et Biophysica Acta, 23, 394–401. https://doi.org/10.1016/0006-3002(57)90343-8.

Article  PubMed  CAS  Google Scholar 

Wood, E. H., & Moe, G. K. (1938). Studies on the effect of digitalis glycosides on potassium ion loss from the heart. American Journal of Physiology, 123, 219–220.

Google Scholar 

Schatzmann, H. J. (1953). Cardiac glycosides as inhibitors of active potassium and sodium transport by erythrocyte membrane. Helvetica Physiologica et Pharmacological Acta, 11, 346–354.

CAS  Google Scholar 

Skou, J. C. (1960). Further investigation on a Mg2+ + Na+-activated adenosinetriphosphatase possibly related to the active transport of Na+ and K+ across the nerve cell membrane. Biochimica et Biophysica Acta, 42, 6–23. https://doi.org/10.1016/0006-3002(60)90746-0.

Article  CAS  Google Scholar 

Hamlyn, J. M., Ringel, R., Schaeffer, J., Levinson, P. D., Hamilton, B. P., Kowarski, A. A., & Blaustein, M. P. (1982). A circulating inhibitor of (Na++K+)ATPase associated with essential hypertension. Nature, 300, 650–652. https://doi.org/10.1038/300650a0.

Article  PubMed  CAS  Google Scholar 

Hamlyn, J. M., Blaustein, M. P., Bova, S., DuCharme, D. W., Harris, D. W., Mandel, F., Mathews, W. R., & Ludens, J. H. (1991). Identification and characterization of a ouabain-like compound from human plasma. Proceedingsof the Naional Academy of Sciences, USA, 88, 6259–6263. https://doi.org/10.1073/pnas.88.14.6259.

Article  CAS  Google Scholar 

Clausen, M. V., Hilbers, F., & Poulsen, H. (2017). The structure and function of the Na,K-ATPase isoforms in health and disease. Frontiers in Physiology, 18, 371 https://doi.org/10.3389/fphys.2017.00371.

Article  Google Scholar 

Pivovarov, A. S., Calahorro, F., & Walker, R. J. (2018). Na+/K+-pump and neurotransmitter membrane receptors. Invertebrate Neuroscience, 19(1), 1 https://doi.org/10.1007/s10158-018-0221-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133–1145. https://doi.org/10.1097/00004647-200110000-00001.

Article  CAS  Google Scholar 

Mercer, R. W., Biemesderfer, D., Bliss, D. P., Collins, J. H., & Forbush, B. (1993). Molecular cloning and immunological characterization of the gamma polypeptide, a small protein associated with the Na,K-ATPase. Journal of Cell Biology, 121(3), 579–586. https://doi.org/10.1083/jcb.121.3.579.

Article  PubMed  CAS  Google Scholar 

Bibert, S., Liu, C. C., Figtree, G. A., Garcia, A., Hamilton, E. J., Marassi, F. M., Sweadner, K. J., Cornelius, F., Geering, K., & Rasmussen, H. H. (2011). FXYD proteins reverse inhibition of the Na+-K+ pump mediated by glutathionylation of its beta1 subunit. Journal of Biological Chemistry, 286(21), 18562–18572. https://doi.org/10.1074/jbc.M110.184101.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blanco, G., & Mercer, R. W. (1998). Isozymes of the Na/K-ATPase: heterogeneity in structure, diversity in function. American Journal of Physiology, 275, F633–F650. https://doi.org/10.1152/ajprenal.1998.275.5.F633.

Article  PubMed  CAS  Google Scholar 

Sweadner, K. J., & Rael, E. (2000). The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics, 68, 41–56. https://doi.org/10.1006/geno.2000.6274.

Article  PubMed  CAS  Google Scholar 

Adams, R. J., Schwartz, A., Grupp, G., Grupp, I., Lee, S. W., Wallick, E. T., Powell, T., Twist, V. W., & Gathiram, P. (1982). High-affinity ouabain binding site and low-dose positive inotropic effect in rat myocardium. Nature, 296, 167–169. https://doi.org/10.1038/296167a0.

Article  PubMed  CAS  Google Scholar 

Albers, R. W. (1967). Biochemical aspects of active transport. Annual Review of Biochemistry, 36, 727–756. https://doi.org/10.1146/annurev.bi.36.070167.003455.

Article  PubMed  CAS  Google Scholar 

Post, R. L., Hegyvary, C., & Kume, S. (1972). Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. Journal of Biological Chemistry, 247, 6530–6540.

Article  PubMed  CAS  Google Scholar 

Jørgensen, P. L. (1986). Structure, function and regulation of Na,K-ATPase in the kidney. Kidney International, 29, 10–20. https://doi.org/10.1038/ki.1986.3.

Article  PubMed  Google Scholar 

Leladze, M., Nozadze, E., Chkadua, G., & Kometiani, Z. (2001). The K+-activation of the Mg-dependent cycle of Na,K-ATPase. JBPC, Journal of Biological Chemistry, 1, 76–80.

CAS  Google Scholar 

Chkadua, G., Nozadze, E., Leladze, M., & Kometiani, Z. (2002). Activation mechanism of the Na,K-ATPase system at the excess of Mg2+. JBPC, Journal of Biological Chemistry, 1/2, 19–24.

Google Scholar 

Gao, H., Popescu, R., Kopp, B., & Wang, Z. (2011). Bufadienolides and their antitumor activity. Natural Products Reports, 28, 953–969. https://doi.org/10.1039/c0np00032a.

Article  CAS  Google Scholar 

Ziff, O. J., & Kotecha, D. (2016). Digoxin: the good and the bad. Trends Cardiovascular Medicine, 26, 585–595. https://doi.org/10.1016/j.tcm.2016.03.011.

Article  CAS  Google Scholar 

Szent-Gyorgyi, A. (1953). Chemical physiology of contraction in body and heart muscle. New York: Academic Press.

Google Scholar 

Bagrov, A. Y., Shapiro, J. I., & Fedorova, O. V. (2009). Endogenous cardiotonic steroids: physiology, pharmacology, and novel therapeutic targets. Pharmacological Reviews, 61, 9–38. https://doi.org/10.1124/pr.108.000711.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rodrigues-Mascarenhas, S., Da Silva de Oliveira, A., Amoedo, N. D., Affonso-Mitidieri, O. R., Rumjanek, F. D., & Rumjanek, V. M. (2009). Modulation of the immune system by ouabain. Annals of New York Academy of Sciences, 1153, 153–163. https://doi.org/10.1111/j.1749-6632.2008.03969.x.

Article  CAS  Google Scholar 

Aperia, A., Akkuratov, E. E., Fontana, J. M., & Brismar, H. (2016). Na+-K+- ATPase, a new class of plasma membrane receptors. American Journal of Physiology - Cell Physiology, 310, C491–C495. https://doi.org/10.1152/ajpcell.00359.2015.

Article  PubMed  Google Scholar 

Hamlyn, J. M., & Blaustein, M. P. (2013). Salt sensitivity, endogenous ouabain and hypertension. Current Opinion in Nephrology and Hypertension, 22, 51–58. https://doi.org/10.1097/MNH.0b013e32835b36ec.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blaustein, M. P., Chen, L., Hamlyn, J. M., Leenen, F. H., Lingrel, J. B., & Wier, W. G. (2016). Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. Journal of Physiology, 594, 6079–6103. https://doi.org/10.1113/JP272419.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xie, Z., & Askari, A. (2002). Na+/K+-ATPase as a signal transducer. European Journal of Biochemistry, 269, 2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x.

Article  PubMed  CAS  Google Scholar 

Xie, Z., & Cai, T. (2003). Na+-K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Molecular Interventions, 3, 157–168. https://doi.org/10.1124/mi.3.3.157.

Article  PubMed  CAS  Google Scholar 

Aperia, A. (2007). New roles for an old enzyme: Na,K-ATPase emerges as an interesting drug target. Journal of International Medicine, 261, 44–52. https://doi.org/10.1111/j.1365-2796.2006.01745.x.

Article  CAS  Google Scholar 

Burns, E. L., Nicholas, R. A., & Price, E. M. (1996). Random mutagenesis of the sheep Na,K-ATPase α1 subunit generating the ouabain-resistant mutant L793P. J. Biological Chemistry, 271, 15879–15883. https://doi.org/10.1074/jbc.271.27.15879.

Article  CAS  Google Scholar 

Comments (0)

No login
gif