Aratani, Y. (2018). Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys., 640, 47–52.
Article CAS PubMed Google Scholar
Lazarevic-Pasti, T., Leskovac, A., & Vasic, V. (2015). Myeloperoxidase inhibitors as potential drugs. Curr. Drug Metab., 16, 168–190.
Article CAS PubMed Google Scholar
Andrés, C. M. C., De La Lastra, J. M. P., Juan, C. A., Plou, F. J., & Pérez-Lebeña, E. (2022). Hypochlorous acid chemistry in mammalian cells-influence on infection and role in various pathologies. Int. J. Mol. Sci., 23, 10735.
Article PubMed PubMed Central Google Scholar
Ford, D. A. (2010). Lipid oxidation by hypochlorous acid: Chlorinated lipids in atherosclerosis and myocardial ischemia. Clin. Lipidol., 5, 835–852.
Article CAS PubMed PubMed Central Google Scholar
Ndrepepa, G. (2019). Myeloperoxidase - a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin. Chim. Acta, 493, 36–51.
Article CAS PubMed Google Scholar
Soubhye J., Furtmüller P. G., Dufrasne F., Obinger C. (2020). In: Handbook of experimental pharmacology, 261–285.
Zhao, L., Shen, C., Xie, S., Zhou, J., Zhang, H., Zhu, H., Li, Y., & Gao, S. (2023). The role and mechanism of myeloperoxidase in dermatomyositis. Int. Immunopharmacol., 124, 110803.
Article CAS PubMed Google Scholar
Zhang, Y., Guan, L., Yu, J., Zhao, Z., Mao, L., Li, S., & Zhao, J. (2016). Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome. Respir. Res., 17, 155.
Article PubMed PubMed Central Google Scholar
Klebanoff, S. J., Kettle, A. J., Rosen, H., Winterbourn, C. C., & Nauseef, W. M. (2013). Myeloperoxidase: A front-line defender against phagocytosed microorganisms. J. Leukoc. Biol., 93, 185–198.
Article CAS PubMed PubMed Central Google Scholar
Frangie, C., & Daher, J. (2022). Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep., 16, 53.
Article CAS PubMed PubMed Central Google Scholar
Davies, M. J., & Hawkins, C. L. (2020). The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid. Redox Signal., 32, 957–981.
Article CAS PubMed Google Scholar
World Health Organization. (2021). Cardiovascular diseases (CVDs). Retrieved from [https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)].
World Health Organization. (2022). Dementia. Retrieved from [https://www.who.int/news-room/fact-sheets/detail/dementia].
Mota, F. A. R., Pereira, S. A. P., Araújo, A. R. T. S., Gullón, B., Passos, M. L. C., & Saraiva, M. L. M. F. S. (2022). Automatic identification of myeloperoxidase natural inhibitors in plant extracts. Molecules, 27, 1825.
Article CAS PubMed PubMed Central Google Scholar
Fiedler, T. J., Davey, C. A., & Fenna, R. E. (2000). X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J. Biol. Chem., 275, 11964–11971.
Article CAS PubMed Google Scholar
Bolscher, B. G. J. M., & Wever, R. (1984). A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate. Biochim. Biophys. Acta Proteins Proteom., 788, 1–10.
Kettle, A. J., Gedye, C. A., Hampton, M. B., & Winterbourn, C. C. (1995). Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem. J., 308(Pt 2), 559–563.
Article CAS PubMed PubMed Central Google Scholar
Kim, H., Wei, Y., Lee, J. Y., Wu, Y., Zheng, Y., Moskowitz, M. A., & Chen, J. W. (2016). Myeloperoxidase inhibition increases neurogenesis after ischemic stroke. J. Pharmacol. Exp. Ther., 359, 262–272.
Article CAS PubMed PubMed Central Google Scholar
Campbell, M. J., Sucquart, I. E., Whittaker, A., Sanganee, H. J., Barratt, C. L. R., & Martins da Silva, S. J. (2021). Myeloperoxidase inhibitor AZD5904 enhances human sperm function in vitro. Hum. Reprod., 36, 560–570.
Article CAS PubMed Google Scholar
Ren, R., Xu, Z., Wang, X., Jiang, W., & Yu, P. (2022). Verdiperstat attenuates acute lung injury by modulating MPO/μ-calpain/β-catenin signaling. Eur. J. Pharmacol., 924, 174940.
Article CAS PubMed Google Scholar
Rudrapal, M., Khan, J., Dukhyil, A. A. B., Alarousy, R. M. I. I., Attah, E. I., Sharma, T., Khairnar, S. J., & Bendale, A. R. (2021). Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 26(23), 7177.
Article CAS PubMed PubMed Central Google Scholar
Khan, J., Deb, P. K., Priya, S., Medina, K. D., Devi, R., Walode, S. G., & Rudrapal, M. (2021). Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules, 26(13), 4021.
Article CAS PubMed PubMed Central Google Scholar
Rudrapal, M., Maji, S., Prajapati, S. K., Kesharwani, P., Deb, P. K., Khan, J., Mohamed Ismail, R., Kankate, R. S., Sahoo, R. K., Khairnar, S. J., & Bendale, A. R. (2022). Protective effects of diets rich in polyphenols in cigarette smoke (CS)-induced oxidative damages and associated health implications. Antioxidants, 11(7), 1217.
Article CAS PubMed PubMed Central Google Scholar
Rietjens, I. M., Boersma, M. G., van der Woude, H., Jeurissen, S. M., Schutte, M. E., & Alink, G. M. (2005). Flavonoids and alkenylbenzenes: Mechanisms of mutagenic action and carcinogenic risk. Mutat. Res., 574, 124–138.
Article CAS PubMed Google Scholar
Ko, C. H., Shen, S. C., & Chen, Y. C. (2004). Hydroxylation at C4′ or C6 is essential for apoptosis-inducing activity of flavanone through activation of the caspase-3 cascade and production of reactive oxygen species. Free Radic. Biol. Med., 36, 897–910.
Article CAS PubMed Google Scholar
Meotti, F. C., Senthilmohan, R., Harwood, D. T., Missau, F. C., Pizzolatti, M. G., & Kettle, A. J. (2008). Myricitrin as a substrate and inhibitor of myeloperoxidase: Implications for the pharmacological effects of flavonoids. Free Radic. Biol. Med., 44, 109–120.
Article CAS PubMed Google Scholar
Marinovic, M. P., Morandi, A. C., & Otton, R. (2015). Green tea catechins alone or in combination alter functional parameters of human neutrophils via suppressing the activation of TLR-4/NFκB p65 signal pathway. Toxicol. In Vitro, 29, 1766–1778.
Article CAS PubMed Google Scholar
Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 117, 7762–7810.
Article CAS PubMed PubMed Central Google Scholar
Samota, M. K., Yadav, D. K., Koli, P., Kaur, M., Kaur, M., Rani, H., Selvan, S. S., Mahala, P., Tripathi, K., & Kumar, S. (2024). Exploring natural chalcones: Innovative extraction techniques, bioactivities, and health potential. Sustainable Food Technol, 2, 1456–1468.
Zeraik, M. L., Ximenes, V. F., Regasini, L. O., Dutra, L. A., Silva, D. H., Fonseca, L. M., Coelho, D., Machado, S. A., & Bolzani, V. S. (2012). 4′-Aminochalcones as novel inhibitors of the chlorinating activity of myeloperoxidase. Curr. Med. Chem., 19, 5405–5413.
Article CAS PubMed Google Scholar
Santos, M. B. D., Carvalho Marques, B., Miranda Ayusso, G., Rocha Garcia, M. A., Chiquetto Paracatu, L., Pauli, I., Silva Bolzani, V., Andricopulo, A. D., Ximenes, V. F., Zeraik, M. L., & Regasini, L. O. (2021). Chalcones and their B-aryl analogues as myeloperoxidase inhibitors: In silico, in vitro and ex vivo investigations. Bioorg. Chem., 110, 104773.
Comments (0)