Filho, A. M., Laversanne, M., Ferlay, J., Colombet, M., Piñeros, M., Znaor, A., Parkin, D. M., Soerjomataram, I., & Bray, F. (2024). The GLOBOCAN 2022 cancer estimates: Data sources, methods, and a snapshot of the cancer burden worldwide. International Journal of Cancer, 156, 1336–1346.
Arzi, L., Hoshyar, R., Jafarzadeh, N., Riazi, G., & Sadeghizadeh, M. (2020). Anti-metastatic properties of a potent herbal combination in cell and mice models of triple negative breast cancer. Life Sciences, 243, 117245.
Article CAS PubMed Google Scholar
Tang, C., Gong, L., Lvzi, X., Qiu, K., Zhang, Z., & Wan, L. (2020). Echinacoside inhibits breast cancer cells by suppressing the Wnt/β-catenin signaling pathway. Biochemical and Biophysical Research Communications, 526, 170–175.
Somasundaram, S., Edmund, N. A., Moore, D. T., Small, G. W., Shi, Y. Y., & Orlowski, R. Z. (2002). Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Research, 62, 3868–3875.
Koh, D. C., Armugam, A., & Jeyaseelan, K. (2006). Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences, 63, 3030–3041.
Ding, J., Chua, P. J., Bay, B. H., & Gopalakrishnakone, P. (2014). Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental Biology and Medicine, 239, 387–393.
Du, Q., Hou, X., Wang, L., Zhang, Y., Xi, X., Wang, H., Zhou, M., Duan, J., Wei, M., Chen, T., & Shaw, C. (2015). AaeAP1 and AaeAP2: Novel antimicrobial peptides from the venom of the scorpion, Androctonus aeneas: Structural characterisation, molecular cloning of biosynthetic precursor-encoding cDNAs and engineering of analogues with enhanced antimicrobial and anticancer activities. Toxins, 7, 219–237.
Primon-Barros, M., & José Macedo, A. (2017). Animal venom peptides: Potential for new antimicrobial agents. Current Topics in Medicinal Chemistry, 17, 1119–1156.
Article CAS PubMed Google Scholar
Wu, T., Wang, M., Wu, W., Luo, Q., Jiang, L., Tao, H., & Deng, M. (2019). Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 25, e146318.
Article CAS PubMed Central Google Scholar
Zhang, P., Ma, J., Zhang, Q., Jian, S., Sun, X., Liu, B., Nie, L., Liu, M., Liang, S., Zeng, Y., & Liu, Z. (2019). Monosaccharide analogues of anticancer peptide R-Lycosin-I: Role of monosaccharide conjugation in complexation and the potential of lung cancer targeting and therapy. Journal of Medicinal Chemistry, 62, 7857–7873.
Article CAS PubMed Google Scholar
Medina, M. A., Oza, G., Sharma, A., Arriaga, L. G., Hernández Hernández, J. M., Rotello, V. M., & Ramirez, J. T. (2020). Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. International Journal of Environmental Research and Public Health, 17, 2078.
Article CAS PubMed Central Google Scholar
Yang, F., Liu, S., Zhang, Y., Qin, C., Xu, L., Li, W., Cao, Z., Li, W., & Wu, Y. (2018). Expression of recombinant α-toxin BmKM9 from scorpion Buthus martensii Karsch and its functional characterization on sodium channels. Peptides, 99, 153–160.
Pohl, S. G., Brook, N., Agostino, M., Arfuso, F., Kumar, A. P., & Dharmarajan, A. (2017). Wnt signaling in triple-negative breast cancer. Oncogenesis, 6, e310.
Article CAS PubMed Google Scholar
Patel, D. K., Kesharwani, R., Verma, A., Al-Abbasi, F. A., Anwar, F., & Kumar, V. (2023). Scope of Wnt signaling in the precise diagnosis and treatment of breast cancer. Drug Discovery Today, 28, 103597.
Wend, P., Runke, S., Wend, K., Anchondo, B., Yesayan, M., Jardon, M., Hardie, N., Loddenkemper, C., Ulasov, I., Lesniak, M. S., Wolsky, R., Bentolila, L. A., Grant, S. G., Elashoff, D., Lehr, S., Latimer, J. J., Bose, S., Sattar, H., Krum, S. A., & Miranda-Carboni, G. A. (2013). WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Molecular Medicine, 5, 264–279.
Article CAS PubMed Central Google Scholar
Luga, V., Zhang, L., Viloria-Petit, A. M., Ogunjimi, A. A., Inanlou, M. R., Chiu, E., Buchanan, M., Hosein, A. N., Basik, M., & Wrana, J. L. (2012). Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell, 151, 1542–1556.
Wang, X., Jung, Y. S., Jun, S., Lee, S., Wang, W., Schneider, A., Sun Oh, Y., Lin, S. H., Park, B. J., Chen, J., Keyomarsi, K., & Park, J. I. (2016). PAF-Wnt signaling-induced cell plasticity is required for maintenance of breast cancer cell stemness. Nature Communications, 7, 10633.
Piva, M., Domenici, G., Iriondo, O., Rábano, M., Simões, B. M., Comaills, V., Barredo, I., López-Ruiz, J. A., Zabalza, I., Kypta, R., & Vivanco, Md. M. (2014). Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Molecular Medicine, 6, 66–79.
Article CAS PubMed Google Scholar
Jiang, S., Zhang, M., Zhang, Y., Zhou, W., Zhu, T., Ruan, Q., Chen, H., Fang, J., Zhou, F., Sun, J., & Yang, X. (2019). WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Communication and Signaling: CCS, 17, 109.
Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., de Stanchina, E., & Massagué, J. (2016). Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell, 165, 45–60.
Article CAS PubMed Google Scholar
Zhu, Q., Wan, N. B., Deng, H. W., Lu, L. L., Zhang, Y., He, X., Liu, H., & He, Y. (2022). SEC14L3 plays a tumor-suppressive role in breast cancer through a Wnt/β-catenin-related way. Experimental Cell Research, 417, 113161.
Article CAS PubMed Google Scholar
Chen, Z. H., Tian, Y., Zhou, G. L., Yue, H. R., Zhou, X. J., Ma, H. Y., Ge, J., Wang, X., Cao, X. C., & Yu, Y. (2023). CMTM7 inhibits breast cancer progression by regulating Wnt/β-catenin signaling. Breast Cancer Research : BCR, 25, 22.
Article CAS PubMed Central Google Scholar
Klint, J. K., Senff, S., Saez, N. J., Seshadri, R., Lau, H. Y., Bende, N. S., Undheim, E. A., Rash, L. D., Mobli, M., & King, G. F. (2013). Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS ONE, 8, e63865.
Article CAS PubMed Central Google Scholar
Richard, S. A., Kampo, S., Sackey, M., Hechavarria, M. E., & Buunaaim, A. D. B. (2020). The pivotal potentials of scorpion buthus martensii karsch-analgesic-antitumor peptide in pain management and cancer. Evidence-Based Complementary and Alternative Medicine : eCAM, 2020, 4234273.
Kampo, S., Ahmmed, B., Zhou, T., Owusu, L., Anabah, T. W., Doudou, N. R., Kuugbee, E. D., Cui, Y., Lu, Z., Yan, Q., & Wen, Q. P. (2019). Scorpion venom analgesic peptide, BmK AGAP inhibits stemness, and epithelial-mesenchymal transition by down-regulating PTX3 in breast cancer. Frontiers in Oncology, 9, 21.
Article PubMed PubMed Central Google Scholar
Kuypers, F. A. (2022). Hyperinflammation, apoptosis, and organ damage. Experimental Biology and Medicine, 247, 1112–1123.
Article CAS PubMed Google Scholar
Mohammad, R. M., Muqbil, I., Lowe, L., Yedjou, C., Hsu, H. Y., Lin, L. T., Siegelin, M. D., Fimognari, C., Kumar, N. B., Dou, Q. P., Yang, H., Samadi, A. K., Russo, G. L., Spagnuolo, C., Ray, S. K., Chakrabarti, M., Morre, J. D., Coley, H. M., Honoki, K., & Azmi, A. S. (2015). Broad targeting of resistance to apoptosis in cancer. Seminars in Cancer Biology, 35(Suppl), S78–s103.
Article PubMed Central Google Scholar
Yang, C., Zhang, J., Ding, M., Xu, K., Li, L., Mao, L., & Zheng, J. (2018). Ki67 targeted strategies for cancer therapy. Clinical & Translational Oncology, 20, 570–575.
Al-Asmari, A. K., Riyasdeen, A., & Islam, M. (2018). Scorpion venom causes upregulation of p53 and downregulation of Bcl-x(L) and BID protein expression by modulating signaling proteins Erk(1/2) and STAT3, and DNA damage in breast and colorectal cancer cell lines. Integrative Cancer Therapies, 17, 271–281.
Article CAS PubMed Google Scholar
Doudou, N. R., Kampo, S., Liu, Y., Ahmmed, B., Zeng, D., Zheng, M., Mohamadou, A., Wen, Q. P., & Wang, S. (2019). Monitoring the early antiproliferative effect of the analgesic-antitumor peptide, BmK AGAP on breast cancer using intravoxel incoherent motion with a reduced distribution of four b-values. Frontiers in Physiology, 10, 708.
Article PubMed PubMed Central Google Scholar
Rezaei, A., Asgari, S., Komijani, S., Sadat, S. N., Sabatier, J. M., Nasrabadi, D., Pooshang Bagheri, K., Shahbazzadeh, D., Akbari Eidgahi, M. R., De Waard, M., & Mirzahoseini, H. (2022). Discovery of leptulipin, a new anticancer protein from theiranian scorpion, hemiscorpius lepturus. Molecules, 27, 2056.
Comments (0)