Blüher, M. (2019). Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology, 15, 288–298.
Howie, G. J., Sloboda, D. M., Kamal, T., & Vickers, M. H. (2009). Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. Journal of Physiology, 587, 905–915.
Article CAS PubMed Google Scholar
Bayol, S. A., Simbi, B. H., & Stickland, N. C. (2005). A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. Journal of Physiology, 567, 951–961.
Article CAS PubMed PubMed Central Google Scholar
Pileggi, C. A., Segovia, S. A., Markworth, J. F., Gray, C., Zhang, X. D., Milan, A. M., Mitchell, C. J., Barnett, M. P., Roy, N. C., Vickers, M. H., Reynolds, C. M., & Cameron-Smith, D. (2016). Maternal conjugated linoleic acid supplementation reverses high-fat diet-induced skeletal muscle atrophy and inflammation in adult male rat offspring. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 310, R432–R439.
Article CAS PubMed Google Scholar
De los Santos, S., Coral-Vázquez, R. M., Menjivar, M., Granados-Silvestre, M. A., Tejeda, M. E., Reyes-Castro, L. A., Méndez, J. P., Zambrano, E., & Canto, P. (2019). (−)-Epicatechin modifies body composition of the male offspring of obese rats. Journal of Functional Foods, 58, 367–373.
Mikovic, J., Brightwell, C., Lindsay, A., Wen, Y., Kowalski, G., Russell, A. P., Fry, C. S., & Lamon, S. (2020). An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. American Journal of Physiology-Endocrinology and Metabolism, 319, E1008–E1018.
Article CAS PubMed Google Scholar
De Los Santos, S., Coral-Vázquez, R. M., Menjivar, M., de Los Ángeles Granados-Silvestre, M., De la Rosa, S., Reyes-Castro LA, Méndez, J. P., Zambrano, E., & Canto, P. (2022). (-)-Epicatechin improves body composition of male rats descendant of obese mothers postnatally fed with a high-fat diet. Fundamental and Clinical Pharmacology, 36, 526–535.
Sishi, B., Loos, B., Ellis, B., Smith, W., du Toit, E. F., & Engelbrecht, A. M. (2011). Diet-induced obesity alters signalling pathways and induces atrophy and apoptosis in skeletal muscle in a prediabetic rat model. Experimental Physiology, 96, 79–193.
Ohanna, M., Sobering, A. K., Lapointe, T., Lorenzo, L., Praud, C., Petroulakis, E., Sonenberg, N., Kelly, P. A., Sotiropoulos, A., & Pende, M. (2005). Atrophy of S6K1(−/−) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nature Cell Biology, 7, 286–294.
Article CAS PubMed Google Scholar
Cremonini, E., Iglesias, D. E., Kang, J., Lombardo, G. E., Mostofinejad, Z., Wang, Z., Zhu, W., & Oteiza, P. I. (2020). (-)-Epicatechin and the comorbidities of obesity. Archives of Biochemistry and Biophysics, 690, 108505.
Article CAS PubMed Google Scholar
Lee, S. J., Leem, Y. E., Go, G. Y., Choi, Y., Song, Y. J., Kim, I., Kim, D. Y., Kim, Y. K., Seo, D. W., Kang, J. S., & Bae, G. U. (2017). Epicatechin elicits MyoD-dependent myoblast differentiation and myogenic conversion of fibroblasts. PLoS One, 12, e0175271.
Article PubMed PubMed Central Google Scholar
Li, P., Liu, A., Xiong, W., Lin, H., Xiao, W., Huang, J., Zhang, S., & Liu, Z. (2020). Catechins enhance skeletal muscle performance. Critical Reviews in Food Science and Nutrition, 60, 515–528.
Article CAS PubMed Google Scholar
Zbinden-Foncea, H., Castro-Sepulveda, M., Fuentes, J., & Speisky, H. (2022). Effect of epicatechin on skeletal muscle. Current Medicinal Chemistry, 29, 1110–1123.
Article CAS PubMed Google Scholar
Cheng, H., Xu, N., Zhao, W., Su, J., Liang, M., Xie, Z., Wu, X., & Li, Q. (2017). (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet. Molecular Nutrition and Food Research, 61, https://doi.org/10.1002/mnfr.201700303
Alvarez-Chávez, A. L., De Los Santos, S., Coral-Vázquez, R. M., Méndez, J. P., Palma Flores, C., Zambrano, E., & Canto, P. (2024). (-)-Epicatechin treatment modify the expression of genes related to atrophy in gastrocnemius muscle of male rats obese by programming. Journal of Developmental Origins of Health and Disease, 15, e21.
Wang, C., Yue, F., & Kuang, S. (2017). Muscle histology characterization using H&E staining and muscle fiber type classification using immunofluorescence staining. Bio-Protocol, 7, e2279.
Article PubMed PubMed Central Google Scholar
Lee, S. R., Khamoui, A. V., Jo, E., Park, B. S., Zourdos, M. C., Panton, L. B., Ormsbee, M. J., & Kim, J. S. (2015). Effects of chronic high-fat feeding on skeletal muscle mass and function in middle-aged mice. Aging Clinical and Experimental Research, 27, 403–411.
Guo, A., Li, K., Tian, H. C., Fan, Z., Chen, Q. N., Yang, Y. F., Yu, J., Wu, Y. X., & Xiao, Q. (2021). FGF19 protects skeletal muscle against obesity-induced muscle atrophy, metabolic derangement and abnormal irisin levels via the AMPK/SIRT-1/PGC-α pathway. Journal of Cellular and Molecular Medicine, 25, 3585–3600.
Article CAS PubMed PubMed Central Google Scholar
Liu, S. H., Chen, Y. C., Tzeng, H. P., & Chiang, M. T. (2021). Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. Journal of Functional Foods, 87, 104755.
Egerman, M. A., & Glass, D. J. (2014). Signaling pathways controlling skeletal muscle mass. Critical Reviews in Biochemistry and Molecular Biology, 49, 59–68.
Article CAS PubMed Google Scholar
Rom, O., & Reznick, A. Z. (2016). The role of E3 ubiquitin-ligases Murf1 and MAFbx in loss of skeletal muscle mass. Free Radical Biology and Medicine, 98, 218–230.
Article CAS PubMed Google Scholar
Cheng, T. L., Lin, Z. Y., Liao, K. Y., Huang, W. C., Jhuo, C. F., Pan, P. H., Chen, C. J., Kuan, Y. H., & Chen, W. Y. (2021). Magnesium lithospermate B attenuates high-fat diet-induced muscle atrophy in C57BL/6J mice. Nutrients, 14, 104.
Article PubMed PubMed Central Google Scholar
Chae, J., Lee, E., Oh, S. M., Ryu, H. W., Kim, S., & Nam, J. O. (2023). Aged black garlic (Allium sativum L.) and aged black elephant garlic (Allium ampeloprasum L.) alleviate obesity and attenuate obesity-induced muscle atrophy in diet-induced obese C57BL/6 mice. Biomedical and Pharmacology, 163, 114810.
Chen, H., Simar, D., & Morris, M. J. (2009). Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS One, 4, e6259.
Article PubMed PubMed Central Google Scholar
Roseno, S. L., Davis, P. R., Bollinger, L. M., Powell, J. J., Witczak, C. A., & Brault, J. J. (2015). Short-term, high-fat diet accelerates disuse atrophy and protein degradation in a muscle-specific manner in mice. Nutrition and Metabolism, 12, 39.
Article PubMed PubMed Central Google Scholar
Eshima, H., Tamura, Y., Kakehi, S., Kurebayashi, N., Murayama, T., Nakamura, K., Kakigi, R., Okada, T., Sakurai, T., Kawamori, R., & Watada, H. (2017). Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiological Reports, 5, e13250.
Article PubMed PubMed Central Google Scholar
Denies, M. S., Johnson, J., Maliphol, A. B., Bruno, M., Kim, A., Rizvi, A., Rustici, K., & Medler, S. (2014). Diet-induced obesity alters skeletal muscle fiber types of male but not female mice. Physiological Reports, 2, e00204.
Article PubMed PubMed Central Google Scholar
Jun, L., Robinson, M., Geetha, T., Broderick, T. L., & Babu, J. R. (2023). Prevalence and mechanisms of skeletal muscle atrophy in metabolic conditions. International Journal of Molecular Sciences, 24, 2973.
Article CAS PubMed PubMed Central Google Scholar
Simar, D., Chen, H., Lambert, K., Mercier, J., & Morris, M. J. (2012). Interaction between maternal obesity and post-natal over-nutrition on skeletal muscle metabolism. Nutrition, Metabolism and Cardiovascular Diseases, 22, 269–276.
Article CAS PubMed Google Scholar
Li, P., Waters, R. E., Redfern, S. I., Zhang, M., Mao, L., Annex, B. H., & Yan, Z. (2007). Oxidative phenotype protects myofibers from pathological insults induced by chronic heart failure in mice. American Journal of Pathology, 170, 599–608.
Article CAS PubMed PubMed Central Google Scholar
Okamoto, T.,
Comments (0)