Resistance Training and Resveratrol Supplementation Improve Cancer Cachexia and Tumor Volume in Muscle Tissue of Male Mice Bearing Colon Cancer CT26 Cell Tumors

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.

PubMed  Google Scholar 

Sun, L., Quan, X. Q., & Yu, S. (2015). An epidemiological survey of cachexia in advanced cancer patients and analysis on its diagnostic and treatment status. Nutrition and Cancer, 67(7), 1056–1062.

Article  PubMed  Google Scholar 

Deboer, M. D. (2009). Animal models of anorexia and cachexia. Expert Opinion on Drug Discovery, 4(11), 1145–1155.

Article  PubMed  PubMed Central  Google Scholar 

Setiawan, T., Sari, I. N., Wijaya, Y. T., Julianto, N. M., Muhammad, J. A., Lee, H., Chae, J. H., & Kwon, H. Y. (2023). Cancer cachexia: molecular mechanisms and treatment strategies. Journal of Hematology & Oncology, 16(1), 54.

Article  Google Scholar 

Oberholzer, R., Hopkinson, J. B., Baumann, K., Omlin, A., Kaasa, S., Fearon, K. C., & Strasser, F. (2013). Psychosocial effects of cancer cachexia: a systematic literature search and qualitative analysis. Journal of Pain and Symptom Management, 46(1), 77–95.

Article  PubMed  Google Scholar 

Wallengren, O., Lundholm, K., & Bosaeus, I. (2013). Diagnostic criteria of cancer cachexia: relation to quality of life, exercise capacity and survival in unselected palliative care patients. Supportive Care Cancer, 21(6), 1569–1577.

Article  Google Scholar 

Tisdale, M. J.(2002). Cachexia in cancer patients. Nature Reviews Cancer, 2(11), 862–871.

Article  CAS  PubMed  Google Scholar 

Berardi, E., Aulino, P., Murfuni, I., Toschi, A., Padula, F., Scicchitano, B. M., Coletti, D., & Adamo, S. (2008). Skeletal muscle is enriched in hematopoietic stem cells and not inflammatory cells in cachectic mice. Neurological Research, 30(2), 160–169.

Article  CAS  PubMed  Google Scholar 

Aulino, P., Berardi, E., Cardillo, V. M., Rizzuto, E., Perniconi, B., Ramina, C., Padula, F., Spugnini, E. P., Baldi, A., & Faiola, F., et al. (2010). Molecular, cellular and physiological characterization of the cancer cachexia-inducing C26 colon carcinoma in mouse. BMC Cancer, 10, 363.

Article  PubMed  PubMed Central  Google Scholar 

Shimobayashi, M., & Hall, M. N. (2014). Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nature Reviews Molecular Cell Biology, 15(3), 155–162.

Article  CAS  PubMed  Google Scholar 

Geremia, A., Sartori, R., Baraldo, M., Nogara, L., Balmaceda, V., Dumitras, G. A., Ciciliot, S., Scalabrin, M., Nolte, H., & Blaauw, B. (2022). Activation of Akt–mTORC1 signalling reverts cancer‐dependent muscle wasting. Journal of Cachexia Sarcopenia and Muscle, 13(1), 648–661.

Article  PubMed  Google Scholar 

Spirina, L. V., Avgustinovich, A. V., Afanas’ev, S. G., Volkov, M. Y., & Kondakova, I. V. (2021). Expression and content of protein LC3B in gastric cancer tissue, relationship with expression of mTOR, AMPK in gastric cancer tissue and HER2 and PD-L1 status of the tumor. Bulletin of Experimental Biology and Medicine, 172(2), 202–205.

Article  CAS  PubMed  Google Scholar 

Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., & Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. The EMBO Journal, 19(21), 5720–5728.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hirunsai, M., & Srikuea, R. (2021). Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sciences, 275, 119352.

Article  CAS  PubMed  Google Scholar 

Penna, F., Costamagna, D., Pin, F., Camperi, A., Fanzani, A., Chiarpotto, E. M., Cavallini, G., Bonelli, G., Baccino, F. M., & Costelli, P. (2013). Autophagic degradation contributes to muscle wasting in cancer cachexia. The American Journal of Pathology, 182(4), 1367–1378.

Article  CAS  PubMed  Google Scholar 

Bossola, M., Muscaritoli, M., Costelli, P., Grieco, G., Bonelli, G., Pacelli, F., Fanelli, Rossi., Doglietto, F., & Baccino, G. B. (2003). FM: Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Annals of Surgery, 237(3), 384–389.

Article  PubMed  PubMed Central  Google Scholar 

Schoenfeld, B. J. (2013). Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training. Sports Medicine, 43(3), 179–194.

Article  PubMed  Google Scholar 

Hu, M., Han, M., Zhang, H., Li, Z., Xu, K., Kang, H., Zong, J., Zhao, F., Liu, Y., & Liu, W. (2023). Curcumin (CUMINUP60®) mitigates exercise fatigue through regulating PI3K/Akt/AMPK/mTOR pathway in mice. Aging (Albany NY), 15(6), 2308.

Article  CAS  PubMed  Google Scholar 

Kim, H., Jeong, M., Na, D. H., Ryu, S. H., Jeong, E. I., Jung, K., Kang, J., Lee, H. J., Sim, T., & Yu, D. Y., et al. (2022). AK2 is an AMP-sensing negative regulator of BRAF in tumorigenesis. Cell Death and Disease, 13(5), 469.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohsawa, M., Maruoka, J., Inami, C., Iwaki, A., Murakami, T., & Ishikura, K. I. (2018). Effect of Ninjin’yoeito on the loss of skeletal muscle function in cancer-bearing mice. Frontiers in Pharmacology, 9, 1400

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oliveira, A. G., & Gomes-Marcondes, M. C. (2016). Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats. BMC Cancer, 16, 418.

Article  PubMed  PubMed Central  Google Scholar 

Domanska-Senderowska, D., Laguette, M. N., Jegier, A., Cieszczyk, P., September, A. V., & Brzezianska-Lasota, E. (2019). MicroRNa profile and adaptive response to exercise training: A review. International Journal of Sports Medicine, 40(4), 227–235.

Article  CAS  PubMed  Google Scholar 

Amirazodi, M., Daryanoosh, F., Mehrabi, A., Gaeini, A., Koushkie Jahromi, M., Salesi, M., & Zarifkar, A. H. (2022). Interactive effects of swimming high-intensity interval training and resveratrol supplementation improve mitochondrial protein levels in the hippocampus of aged rats. BioMed Research International, 2022, 8638714

Article  PubMed  PubMed Central  Google Scholar 

Hardee, J. P., Counts, B. R., Gao, S., VanderVeen, B. N., Fix, D. K., Koh, H. J., & Carson, J. A. (2018). Inflammatory signalling regulates eccentric contraction-induced protein synthesis in cachectic skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 9(2), 369–383.

Article  PubMed  Google Scholar 

Otis, J. S., Lees, S. J., & Williams, J. H. (2007). Functional overload attenuates plantaris atrophy in tumor-bearing rats. BMC Cancer, 7, 146.

Article  PubMed  PubMed Central  Google Scholar 

Khamoui, A. V., Park, B. S., Kim, D. H., Yeh, M. C., Oh, S. L., Elam, M. L., Jo, E., Arjmandi, B. H., Salazar, G., & Grant, S. C., et al. (2016). Aerobic and resistance training dependent skeletal muscle plasticity in the colon-26 murine model of cancer cachexia. Metabolism, 65(5), 685–698.

Article  CAS  PubMed  Google Scholar 

Sharma, S., Anjaneyulu, M., Kulkarni, S. K., & Chopra, K. (2006). Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology, 76(2), 69–75.

Article  CAS  PubMed  Google Scholar 

Rauf, A., Imran, M., Butt, M. S., Nadeem, M., Peters, D. G., & Mubarak, M. S. (2018). Resveratrol as an anti-cancer agent: A review. Critical Reviews in Food Science and Nutrition, 58(9), 1428–1447.

Article  PubMed  Google Scholar 

Ma, R., Yu, D., Peng, Y., Yi, H., Wang, Y., Cheng, T., Shi, B., Yang, G., Lai, W., & Wu, X. (2021). Resveratrol induces AMPK and mTOR signaling inhibition-mediated autophagy and apoptosis in multiple myeloma cells. Acta Biochimica et Biophysica Sinica, 53(6), 775–783.

Article  CAS  PubMed  Google Scholar 

Wang, X. H., Zhu, L., Hong, X., Wang, Y. T., Wang, F., Bao, J. P., Xie, X. H., Liu, L., & Wu, X. T. (2016). Resveratrol attenuated TNF-alpha-induced MMP-3 expression in human nucleus pulposus cells by activating autophagy via AMPK/SIRT1 signaling pathway. Experimental Biology and Medicine (Maywood), 241(8), 848–853.

Article  CAS  Google Scholar 

Zhang, J., Li, J., Liu, Y., Liang, R., Mao, Y., Yang, X., Zhang, Y., & Zhu, L. (2023). Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes. Meat Science, 204, 109287.

Comments (0)

No login
gif