Zapała, P., Garbas, K., Lewandowski, Z., Ślusarczyk, A., Ślusarczyk, C., & Mielczarek, Ł., et al. (2023). Neutrophil-to-lymphocyte ratio predicts nodal involvement in unfavourable, clinically nonmetastatic prostate cancer patients and overall survival in pN1 patients. Scientific Reports, 13(1), 392 (1–8).
Article PubMed PubMed Central Google Scholar
Vandekerkhove, G., Chi, K. N., & Wyatt, A. W. (2018). Clinical utility of emerging liquid biomarkers in advanced prostate cancer. Cancer Genetics, 228–229, 151–158.
SopeñaSutil, R., Gómez Grande, A., González Díaz, A., Téigel Tobar, J., Cabeza Rodríguez, M. Á., & González Billalabeitia, E., et al. (2022). Role of F-Choline PET/CT in the initial staging of high risk prostate cancer and comparison with conventional imaging techniques. Archivos Espanoles de Urologia, 75(8), 684–692.
Wu, J., Guo, S., Wang, L., & Liao, Z. (2022). Correlation analysis between CD133, Klk3 and grhl2 expression and tumor characteristics in prostate cancer. Cellular and Molecular Biology, 67(6), 68–73.
Piramide, F., Bravi, C. A., Turri, F., DI Maida, F., Andras, I., & Lambert, E., et al. (2022). ERUS/YA U Working Group on Robot-assisted Surgery of the European Association of Urology. Retzius-sparing robot-assisted radical prostatectomy in high-risk prostate cancer: can it be as effective as the anterior approach in such a challenging setting? Cellular and Molecular Biology, 74(6), 807–809.
Ertl, I. E., Brettner, R., Kronabitter, H., Mohr, T., Derdak, S., & Jeitler, M., et al. (2022). The SMARCD family of SWI/SNF accessory proteins is involved in the transcriptional regulation of androgen receptor-driven genes and plays a role in various essential processes of prostate cancer. Cell Press, 12(1), 124.
Gloger, S., Ubrig, B., Boy, A., Leyh-Bannurah, S. R., Siemer, S., Arndt, M., & Stolzenburg, J. U., et al. (2022). Bilateral peritoneal flaps reduce incidence and complications of lymphoceles after robotic radical prostatectomy with pelvic lymph node dissection-results of the prospective randomized multicenter trial proly. Journal of Urology, 208(2), 333–340.
Nicolopoulos, K., Moshi, M. R., Stringer, D., Ma, N., Jenal, M., & Vreugdenburg, T. (2023). The clinical effectiveness of denosumab (Prolia®) in patients with hormone-sensitive cancer receiving endocrine therapy, compared to bisphosphonates, selective estrogen receptor modulators (SERM), and placebo: a systematic review and network meta-analysis. Archives of Osteoporosis, 18(1), 18.
HLi, R., Liu, H., Dilger, J. P., & Lin, J. (2018). Effect of Propofol on breast Cancer cell, the immune system, and patient outcome. BMC Anesthesiology, 18(1), 77.
Liu, H. (2023). Expression and potential immune involvement of cuproptosis in kidney renal clear cell carcinoma. Cancer Genetics, 274-275, 21–25.
Article CAS PubMed Google Scholar
Chamoto, K., Wakita, D., Narita, Y., Zhang, Y., Noguchi, D., & Ohnishi, H., et al. (2006). An essential role of antigen-presenting cell/T-helper type 1 cell-cell interactions in draining lymph node during complete eradication of class II-negative tumor tissue by T-helper type 1 cell therapy. Cancer Research, 66(3), 1809–1817.
Article CAS PubMed Google Scholar
Yan, X. H., Dong, Q. L., Jin, G., Zhu, Y. N., & Zhang, L. P. (2021). Effect of interleukin-17 gene on glomerular ultrastructure and podocyte injury in adriamycin nephropathy rat models. Journal of Biological Regulators and Homeostatic Agents, 35(3), 1001–1010.
Wang, W., Wang, X., Yang, W., Zhong, K., He, N., & Li, X., et al. (2021). A CTLA-4 blocking strategy based on Nanoboby in dendritic cell-stimulated cytokine-induced killer cells enhances their anti-tumor effects. BioMed Central, 21(1), 1029.
Golay, J., Martinelli, S., Alzani, R., Cribioli, S., Albanese, C., & Gotti, E., et al. (2018). Cord blood-derived cytokine-induced killer cells combined with blinatumomab as a therapeutic strategy for CD19 tumors. Cytotherapy, 20(8), 1077–1088.
Article CAS PubMed Google Scholar
Zhou, L., Chen, Q., Chen, H., Wang, L., & Zhang, J. (2022). Enhanced inhibitory effect of DC-CIK cells on lung adenocarcinoma via Anti-Tim-3 antibody and antiprogrammed cell death-1 antibody and possible mechanism. Evidence-based Complementary and Alternative Medicine, 2022, 4097576.
PubMed PubMed Central Google Scholar
Chomchoei, C., Brimson, J. M., & Brimson, S. (2022). Repurposing fluoxetine to treat lymphocytic leukemia: apoptosis induction, sigma-1 receptor upregulation, inhibition of IL-2 cytokine production, and autophagy induction. Expert Opinion on Therapeutic Targets, 26(12), 1087–1097.
Article CAS PubMed Google Scholar
Naseer, F., Ahmad, T., Kousar, K., Kakar, S., Gul, R., & Anjum, S., et al. (2023). Formulation for the targeted delivery of a vaccine strain of Oncolytic Measles Virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: a viro-immunotherapeutic approach. International Journal Of Nanomedicine, 18, 185–205.
Article CAS PubMed PubMed Central Google Scholar
Huang, R., Li, Y., Wu, H., Liu, B., Zhang, X., & Zhang, Z. (2023). 68Ga-PSMA-11 PET/CT versus 68Ga-PSMA-11 PET/MRI for the detection of biochemically recurrent prostate cancer: a systematic review and meta-analysis. Frontiers in Oncology, 13, 1216894.
Article CAS PubMed PubMed Central Google Scholar
Huang, S., Yuan, J., Xie, Y., Qing, K., Shi, Z., & Chen, G., et al. (2023). Targeting nano-regulator based on metal–organic frameworks for enhanced immunotherapy of bone metastatic prostate cancer. Cancer Nanotechnology, 14(1), 43.
Gao, Y., Liu, Y., Liu, Y., Peng, Y., Yuan, B., & Fu, Y., et al. (2021). UHRF1 promotes androgen receptor-regulated CDC6 transcription and anti-androgen receptor drug resistance in prostate cancer through KDM4C-Mediated chromatin modifications. Cancer Letters, 520, 172–183.
Article CAS PubMed Google Scholar
Lu, M., Wei, F., Ma, S., Xu, Z., Wang, J., Yang, C., & Mao, L. (2021). Oncolytic Virus as a Novel Modality for the Treatment of Prostate Cancer. Discovery Medicine, 32(167), 133–139.
Kim, K. S., Choi, B., Choi, H., Ko, M. J., Kim, D. H., & Kim, D. H. (2022). Enhanced natural killer cell anti-tumor activity with nanoparticles mediated ferroptosis and potential therapeutic application in prostate cancer. Journal of Nanobiotechnology, 20(1), 428.
Article CAS PubMed PubMed Central Google Scholar
Dong, Y., Gao, S., Zhang, X., Kou, J., Liu, J., Ye, T., & Shen, H. (2022). CCL17 and CCL22 induce CCR4 receptor expression and promote cytokine-induced killer cells migration. Anti-cancer Drugs, 33(2), 149–157.
Article CAS PubMed Google Scholar
Zhang, Z., Xiong, L., Wu, Z., Liu, H., Ning, K., & Peng, Y., et al. (2021). Neoadjuvant combination of pazopanib or axitinib and programmed cell death protein-1-activated dendritic cell-cytokine-induced killer cells immunotherapy may facilitate surgery in patients with renal cell carcinoma. Translational Andrology and Urology, 10(5), 2091–2102.
Article PubMed PubMed Central Google Scholar
Chen, S., Yang, Y., Jiao, Y., Sun, H., & Yan, Z. (2021). Capecitabine metronomic chemotherapy combined with autologous CIK cell immunotherapy in the treatment of recurrent and metastatic triple-negative breast cancer. Journal of BUON, 26(3), 734–740.
Xu, H., Qin, W., Feng, H., Song, D., Yang, X., & Zhang, J. (2021). Analysis of the clinical efficacy of dendritic cell -cytokine induced killer cell-based adoptive immunotherapy for colorectal cancer. Immunological investigations, 50(6), 622–633.
Article CAS PubMed Google Scholar
Zhang, Y., Wu, X., Sharma, A., Weiher, H., Schmid, M., & Kristiansen, G., et al. (2022). Anti-CD40 predominates over anti-CTLA-4 to provide enhanced antitumor response of DC-CIK cells in renal cell carcinoma. Frontiers in Immunology, 13, 925633.
Article CAS PubMed PubMed Central Google Scholar
Pietraforte, I., Butera, A., Gaddini, L., Mennella, A., Palazzo, R., & Campanile, D., et al. (2022). CXCL4-RNA complexes circulate in systemic sclerosis and amplify inflammatory/pro-fibrotic responses by myeloid dendritic cells. International Journal of Molecular Sciences, 24(1), 653.
Article PubMed PubMed Central Google Scholar
Singh, S., Maurya, S. K., Aqdas, M., Bashir, H., Arora, A., & Bhalla, V., et al. (2022). Mycobacterium tuberculosis exploits MPT64 to generate myeloid-derived suppressor cells to evade the immune system. Cellular and molecular life sciences, 79(11), 567.
Article CAS PubMed Google Scholar
Dehno, M. N., Li, Y., Weiher, H., & Schmidt-Wolf, I. G. H. (2020). Increase in efficacy of checkpoint inhibition by cytokine-induced-killer cells as a combination immunotherapy for renal cancer. International Journal of Molecular Sciences, 21(9), 3078.
Article CAS PubMed PubMed Central Google Scholar
Fayyaz, F., Yazdanpanah, N., & Rezaei, N. (2022). Cytokine-induced killer cells mediated pathways in the treatment of colorectal cancer. Cell Communication and Signaling, 20(1), 41.
Comments (0)