The impact of vitreous humor: a new perspective on radiation-induced cataractogenesis

Durkin SR, Roos D, Higgs B, Casson RJ, Selva D (2007) Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand 85(3):240–250. https://doi.org/10.1111/j.1600-0420.2006.00822.x

Article  PubMed  Google Scholar 

Holekamp NM, Shui YB, Beebe D (2006) Lower intraocular oxygen tension in diabetic patients: possible contribution to decreased incidence of nuclear sclerotic cataract. Am J Ophthalmol 141(6):1027–1032. https://doi.org/10.1016/j.ajo.2006.01.016

Article  PubMed  Google Scholar 

Shui YB, Fu JJ, Garcia C, Dattilo LK, Rajagopal R, McMillan S et al (2006) Oxygen distribution in the rabbit eye and oxygen consumption by the lens. Invest Ophthalmol Vis Sci 47(4):1571–1580. https://doi.org/10.1167/iovs.05-1475

Article  PubMed  Google Scholar 

Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F et al (2009) The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol 127(4):475–482. https://doi.org/10.1001/archophthalmol.2008.621

Article  PubMed  PubMed Central  Google Scholar 

Barbazetto IA, Liang J, Chang S, Zheng L, Spector A, Dillon JP (2004) Oxygen tension in the rabbit lens and vitreous before and after vitrectomy. Exp Eye Res 78(5):917–924. https://doi.org/10.1016/j.exer.2004.01.003

Article  PubMed  CAS  Google Scholar 

Truscott RJ (2005) Age-related nuclear cataract-oxidation is the key. Exp Eye Res 80(5):709–725. https://doi.org/10.1016/j.exer.2004.12.007

Article  PubMed  CAS  Google Scholar 

Elmali A, Koc I, Ciftci SY, Nemutlu E, Surucu S, Kiratli H et al (2021) Radiotherapy-induced alterations in vitreous humor: a new potential critical structure. Exp Eye Res 212:108802. https://doi.org/10.1016/j.exer.2021.108802

Article  PubMed  CAS  Google Scholar 

Worgul BV, Bito LZ, Merriam GR Jr. (1977) Intraocular inflammation produced by X‑irradiation of the rabbit eye. Exp Eye Res 25(1):53–61. https://doi.org/10.1016/0014-4835(77)90246-9

Article  PubMed  CAS  Google Scholar 

Schmelter V, Schneider F, Guenther SR, Fuerweger C, Muacevic A, Priglinger SG et al (2023) Local recurrence in choroidal melanomas following robotic-assisted radiosurgery (Cyberknife). Ocul Oncol Pathol 8(4–6):221–229. https://doi.org/10.1159/000527915

Article  PubMed  Google Scholar 

Worgul BV, Medvedovsky C, Merriam GR Jr. (1981) Cataractogenesis in the X‑irradiated rabbit eye. Curr Eye Res 1(5):275–280. https://doi.org/10.3109/02713688108999447

Article  PubMed  CAS  Google Scholar 

http://www.mccauslandcenter.sc.edu/mricrogl/home

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S et al (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Alter AJ, Leinfelder PJ (1953) Roentgen-ray cataract; effects of shielding of the lens and ciliary body. AMA Arch Ophthalmol 49(3):257–260

Article  PubMed  CAS  Google Scholar 

Puntenney I, Shoch D (1954) The ciliary body in radiation cataract. Am J Ophthalmol 38(5):673–682. https://doi.org/10.1016/0002-9394(54)90293-7

Article  PubMed  CAS  Google Scholar 

Piroth MD, Pinkawa M, Holy R, Stoffels G, Demirel C, Attieh C et al (2009) Integrated-boost IMRT or 3‑D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme—a dosimetric comparison. Radiat Oncol 4:57. https://doi.org/10.1186/1748-717X-4-57

Article  PubMed  PubMed Central  Google Scholar 

Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F et al (2015) Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol 114(2):230–238. https://doi.org/10.1016/j.radonc.2015.01.016

Article  PubMed  Google Scholar 

Nguyen SM, Sison J, Jones M, Berry JL, Kim JW, Murphree AL et al (2019) Lens dose-response prediction modeling and cataract incidence in patients with retinoblastoma after lens-sparing or whole-eye radiation therapy. Int J Radiat Oncol Biol Phys 103(5):1143–1150. https://doi.org/10.1016/j.ijrobp.2018.12.004

Article  PubMed  Google Scholar 

Jeganathan VS, Wirth A, MacManus MP (2011) Ocular risks from orbital and periorbital radiation therapy: a critical review. Int J Radiat Oncol Biol Phys 79(3):650–659. https://doi.org/10.1016/j.ijrobp.2010.09.056

Article  PubMed  Google Scholar 

Merriam GR Jr., Worgul BV (1983) Experimental radiation cataract—its clinical relevance. Bull N Y Acad Med 59(4):372–392

PubMed  PubMed Central  Google Scholar 

Barakat E, Ginat DT (2020) Magnetic resonance imaging (MRI) features of cataracts in pediatric and young adult patients. Quant Imaging Med Surg 10(2):428–431. https://doi.org/10.21037/qims.2020.01.03

Article  PubMed  PubMed Central  Google Scholar 

de Graaf P, van der Valk P, Moll AC, Imhof SM, Schouten-van Meeteren AY, Knol DL et al (2010) Contrast-enhancement of the anterior eye segment in patients with retinoblastoma: correlation between clinical, MR imaging, and histopathologic findings. AJNR Am J Neuroradiol 31(2):237–245. https://doi.org/10.3174/ajnr.A1825

Article  PubMed  PubMed Central  Google Scholar 

de Graaf P, Barkhof F, Moll AC, Imhof SM, Knol DL, van der Valk P et al (2005) Retinoblastoma: MR imaging parameters in detection of tumor extent. Radiology 235(1):197–207. https://doi.org/10.1148/radiol.2351031301

Article  PubMed  Google Scholar 

Deike-Hofmann K, von Lampe P, Eerikaeinen M, Ting S, Schluter S, Schlemmer HP et al (2022) Anterior chamber enhancement predicts optic nerve infiltration in retinoblastoma. Eur Radiol 32(11):7354–7364. https://doi.org/10.1007/s00330-022-08778-4

Article  PubMed  PubMed Central  CAS  Google Scholar 

Grabham P, Sharma P (2013) The effects of radiation on angiogenesis. Vasc Cell 5(1):19. https://doi.org/10.1186/2045-824X-5-19

Article  PubMed  PubMed Central  CAS  Google Scholar 

Obrador E, Montoro A (2023) Ionizing radiation, antioxidant response and oxidative damage: radiomodulators. Antioxidants. https://doi.org/10.3390/antiox12061219

Article  PubMed  PubMed Central  Google Scholar 

Mancino R, Di Pierro D, Varesi C, Cerulli A, Feraco A, Cedrone C et al (2011) Lipid peroxidation and total antioxidant capacity in vitreous, aqueous humor, and blood samples from patients with diabetic retinopathy. Mol Vis 17:1298–1304

PubMed  PubMed Central  CAS  Google Scholar 

Aras S, Tanzer IHO, Karacavus S, Sayir N, Erdem E, Hacimustafaoglu F et al (2023) Effect of melatonin on low and high dose radiotherapy induced thyroid injury. Biotech Histochem 98(5):346–352. https://doi.org/10.1080/10520295.2023.2189752

Article  PubMed  CAS  Google Scholar 

Tripathi AM, Khan S, Chaudhury NK (2022) Radiomitigation by Melatonin in C57BL/6 mice: possible implications as adjuvant in radiotherapy and chemotherapy. In Vivo 36(3):1203–1221. https://doi.org/10.21873/invivo.12820

Article  PubMed  PubMed Central  CAS  Google Scholar 

Xu Z, Wei Y, Gong J, Cho H, Park JK, Sung ER et al (2014) NRF2 plays a protective role in diabetic retinopathy in mice. Diabetologia 57(1):204–213. https://doi.org/10.1007/s00125-013-3093-8

Article  PubMed  CAS  Google Scholar 

Sekhar KR, Freeman ML (2015) Nrf2 promotes survival following exposure to ionizing radiation. Free Radic Biol Med 88(Pt B):268–274.

Comments (0)

No login
gif