Abdar M, Książek W, Acharya UR, Tan R-S, Makarenkov V, Pławiak P. A new machine learning technique for an accurate diagnosis of coronary artery disease. Comput Methods Programs Biomed. 2019;179: 104992.
Ahadzadeh, B., Abdar, M., Safara, F., Aghaei, L., Mirjalili, S., Khosravi, A., ... (2024). Improved binary differential evolution with dimensionality reduction mechanism and binary stochastic search for feature selection. Applied Soft Computing, 151, 111141.
Alnemer LM, Rajab L, Aljarah I. Conformal prediction technique to predict breast cancer survivability. International Journal of Advanced Science and Technology. 2016;96:1–10.
Alvarsson J, Arvidsson McShane S, Norinder U, Spjuth O. Predicting With Confidence: Using Conformal Prediction in Drug Discovery. J Pharm Sci. 2021;110(1):42–9.
Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoret Comput Sci. 1998;209(1–2):237–60.
Article MathSciNet Google Scholar
Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
Balasubramanian, V., Ho, S.-S., & Vovk, V. (2014). Conformal prediction for reliable machine learning: Theory, adaptations and applications. Morgan Kaufmann Publishers Inc.
Balasubramanian, V. N., Gouripeddi, R., Panchanathan, S., Vermillion, J., Bhaskaran, A., & Siegel, R. (2009). Support vector machine based conformal predictors for risk of complications following a coronary drug eluting stent procedure. Proceedings of the 2009 36th Annual computers in Cardiology Conference (CinC), (pp. 5–8) IEEE.
Beheshti Z. BMPA-TVSinV: A Binary Marine Predators Algorithm using time-varying sine and V-shaped transfer functions for wrapper-based feature selection. Knowl-Based Syst. 2022;252: 109446.
Benjamin, E. J., Muntner, P., Alonso, A., Bittencourt, M. S., Callaway, C. W., Carson, A. P., ... (2019). Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation, 139(10), e56-e528.
Brown, J. C., Gerhardt, T. E., & Kwon, E. (2024). Risk factors for coronary artery disease. In: StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.
Cardiovascular diseases. (2021). https://www.who.int/health topics/cardiovascular-disease
Chandrashekar G, Sahin F. A survey on feature selection methods. Comput Electr Eng. 2014;40(1):16–28.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, (pp. 785–794)
Ching-Lai Hwang, K. Y. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.
Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13(1):21–7.
Cristianini N, Ricci E. Support Vector Machines. In: Kao M-Y, editor. Encyclopedia of Algorithms. US: Springer; 2008. p. 928–32.
Cunningham, P., & Delany, S. J. (2020). k-Nearest neighbour classifiers: (with Python examples). arXiv preprint arXiv:2004.04523.
Dash M, Liu H. Feature selection for classification. Intelligent Data Analysis. 1997;1(1–4):131–56.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput. 2002;6(2):182–97.
Devetyarov, D., Nouretdinov, I., Burford, B., Camuzeaux, S., Gentry-Maharaj, A., Tiss, A., ... (2012). Conformal predictors in early diagnostics of ovarian and breast cancers. Progress in Artificial Intelligence, 1, 245–257.
Gad, A. F. (2023). Pygad: An intuitive genetic algorithm python library. Multimedia Tools and Applications, 1–14.
Gammerman, A., Vovk, V., & Vapnik, V. (1998). Learning by transduction, vol UAI’98. In: Morgan Kaufmann Publishers Inc., San Francisco, CA.
Gupta, A., Rajput, I. S., Gunjan, Jain, V., & Chaurasia, S. (2022). NSGA‐II‐XGB: Meta‐heuristic feature selection with XGBoost framework for diabetes prediction. Concurrency and Computation: Practice and Experience, 34(21), e7123.
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003;3:1157–82.
Huang B, Buckley B, Kechadi TM. Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications. Expert Syst Appl. 2010;37(5):3638–46.
Khan, Y., Qamar, U., Yousaf, N., & Khan, A. (2019, 22–24 February). Machine learning techniques for heart disease datasets: A survey, Proceedings of the 2019 11th International Conference on Machine Learning and Computing, Zhuhai, China. (pp. 27–35), Association for Computing Machinery.
Kohavi R, John GH. Wrappers for feature subset selection. Artif Intell. 1997;97(1–2):273–324.
Linusson, H., Johansson, U., Boström, H., & Löfström, T. (2016, 2016//). Reliable Confidence predictions using conformal prediction. Advances in Knowledge Discovery and Data Mining, Cham. (pp. 77–88) Springer International Publishing
Luo, Y., Bsoul, A. A.-R., & Najarian, K. (2011). Confidence-based classification with dynamic conformal prediction and its applications in biomedicine. Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, (pp. 353–356) IEEE.
Maleki S, Mehrjerdi YZ. Diagnosis of coronary artery disease by Bat and Harris hawk meta-heuristic optimization algorithms and machine learning methods. Journal of Health Administration. 2022;25(1):57–68.
Maleki S, Zare Mehrjerdi Y, Shishebori D, Mirzaei M. Predicting coronary artery diseases using effective features selected by Harris Hawks optimization algorithm and support vector machine. Journal of Industrial and Systems Engineering. 2022;14:40–7.
Md Idris N, Chiam YK, Varathan KD, Wan Ahmad WA, Chee KH, Liew YM. Feature selection and risk prediction for patients with coronary artery disease using data mining. Med Biol Eng Compu. 2020;58(12):3123–40.
Mendil, M., Mossina, L., & Vigouroux, D. (2023). PUNCC: A Python library for predictive uncertainty calibration and conformalization, Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications, Proceedings of Machine Learning Research. https://proceedings.mlr.press/v204/mendil23a.html (pp. 582-−601) PMLR
Montgomery DC. Design and analysis of experiments. John Wiley & Sons; 2017.
Myszkowski, P., Laszczyk, M., & Lichodij, J. (2017). Efficient selection operators in NSGA-II for solving bi-objective multi-skill resource-constrained project scheduling problem. Proceedings of the Federated Conference on Computer Science and Information Systems (FedCSIS), (pp. 83–86) IEEE
Norinder U, Carlsson L, Boyer S, Eklund M. Introducing conformal prediction in predictive modeling for regulatory purposes: A transparent and flexible alternative to applicability domain determination. Regul Toxicol Pharmacol. 2015;71(2):279–84.
Papadopoulos, H., Gammerman, A., & Vovk, V. (2009, 2009//). Confidence predictions for the diagnosis of acute abdominal pain. Artificial Intelligence Applications and Innovations III, Boston, MA. (pp. 175–184) Springer US
Papadopoulos H, Gammerman A, Vovk V. Reliable diagnosis of acute abdominal pain with conformal prediction. Eng Intell Syst. 2009;17(2):127.
Papadopoulos H, Kyriacou E, Nicolaides A. Unbiased confidence measures for stroke risk estimation based on ultrasound carotid image analysis. Neural Comput Appl. 2017;28:1209–23.
Paredes S, Rocha T, de Carvalho P, Henriques J, Morais J, Ferreira J. Integration of different risk assessment tools to improve stratification of patients with coronary artery disease. Med Biol Eng Compu. 2015;53(10):1069–83.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
Pereira T, Cardoso S, Guerreiro M, Madeira SC, Initiative ASDN. Targeting the uncertainty of predictions at patient-level using an ensemble of classifiers coupled with calibration methods, Venn-ABERS, and Conformal Predictors: A case study in AD. J Biomed Inform. 2020;101: 103350.
Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers. 1999;10(3):61–74.
Qasim OS, Algamal ZY. Feature selection using different transfer functions for binary bat algorithm. International Journal of Mathematical, Engineering and Management Sciences. 2020;5(4):697.
Romano Y, Sesia M, Candes E. Classification with valid and adaptive coverage. Adv Neural Inf Process Syst. 2020;33:3581–91.
Sayadi M, Varadarajan V, Sadoughi F, Chopannejad S, Langarizadeh M. A machine learning model for detection of coronary artery disease using noninvasive clinical parameters. Life. 2022;12(11):1933.
Schott, J. R. (1995). Fault tolerant design using single and multicriteria genetic algorithm optimization Massachusetts Institute of Technology.
Shafer G, Vovk V. A tutorial on conformal prediction. J Mach Learn Res. 2008;9(3):371–421.
Subathra R, Sumathy V. An offbeat bolstered swarm integrated ensemble learning (BSEL) model for heart disease diagnosis and classification. Appl Soft Comput. 2024;154: 111273.
Tafakkori, K. (2024). FelooPy: Efficient and feature-rich integrated decision environment. In GitHub. https://github.com/ktafakkori/feloopy/
Tama BA, Im S, Lee S. Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble. Biomed Res Int. 2020;2020(1):9816142.
Verma S, Pant M, Snasel V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems. IEEE Access. 2021;9:57757–91.
Vovk V. Conditional validity of inductive conformal predictors. Mach Learn. 2013;92(2):349–76.
Article MathSciNet Google Scholar
Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world (Vol. 29). Springer.
Vovk, V., & Petej, I. (2012). Venn-abers predictors. arXiv preprint arXiv:1211.0025.
Zadrozny, B., & Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability estimates. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 694–699)
Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans Evol Comput. 1999;3(4):257–71.
Comments (0)