Abdel Salam OME, Sleem AA, Shafee N (2010) Hepatoprotective effects of the nitric oxide donor isosorbide-5-mononitrate alone and in combination with the natural hepatoprotectant, silymarin, on carbon tetrachloride-induced hepatic injury in rats. Inflammopharmacology 18(2):87–94. https://doi.org/10.1007/s10787-009-0027-7
Article PubMed CAS Google Scholar
Abdelaziz RR, Elkashef WF, Said E (2015) Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ Toxicol Pharmacol 40(1):259–267. https://doi.org/10.1016/j.etap.2015.06.019
Article PubMed CAS Google Scholar
Abdollahi E, Keyhanfar F, Delbandi AA, Falak R, Hajimiresmaiel SJ, Shafiei M (2022) Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur J Pharmacol 918:174715. https://doi.org/10.1016/j.ejphar.2021.174715
Article PubMed CAS Google Scholar
Afifi NA, Ibrahim MA, Galal MK (2018) Hepatoprotective influence of Quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats. Can J Physiol Pharmacol 96(6):624–629. https://doi.org/10.1139/cjpp-2017-0651
Article PubMed CAS Google Scholar
Albéri L, Chi Z, Kadam SD, Mulholland JD, Dawson VL, Gaiano N, Comi AM (2010) Neonatal stroke in mice causes long-term changes in neuronal Notch-2 expression that may contribute to prolonged injury. Stroke 41(10 Suppl):64–71. https://doi.org/10.1161/STROKEAHA.110.595298
Albrecht J, Norenberg MD (2006) Glutamine: a trojan horse in ammonia neurotoxicity. Hepatology 44(4):788–94. https://doi.org/10.1002/hep.21357
Article PubMed CAS Google Scholar
Allampati SK, Mullen KD (2019) Understanding the impact of neurologic complications in patients with cirrhosis. SAGE Open Med 7:2050312119832090. https://doi.org/10.1177/2050312119832090
Article PubMed PubMed Central Google Scholar
Alomar M, Al-attar A (2019) Effect of basil leaves extract on liver fibrosis induced by thioacetamide in male rats. Int J Pharmacol 15:478–485. https://doi.org/10.3923/ijp.2019.478.485
Alsereidi FR, Khashim Z, Marzook H, Al-Rawi AM, Salomon T, Almansoori MK, Madkour MM, Hamam AM, Ramadan MM, Peterson QP, Saleh MA (2024) Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells. Cardiovasc Diabetol 23(1):388. https://doi.org/10.1186/s12933-024-02481-yPMID: 39472869; PMCID: PMC11520772
Article PubMed PubMed Central CAS Google Scholar
Arab HH, Safar MM, Shahin NN (2021) Targeting ROS-dependent AKT/GSK-3β/NF-κB and DJ-1/Nrf2 pathways by Dapagliflozin attenuates neuronal injury and motor dysfunction in Rotenone-induced parkinson’s disease rat model. ACS Chem Neurosci 12(4):689–703. https://doi.org/10.1021/acschemneuro.0c00722
Article PubMed CAS Google Scholar
Arauz J, Moreno MG, Cortés-Reynosa P, Salazar EP, Muriel P (2013) Coffee attenuates fibrosis by decreasing the expression of TGF-β and CTGF in a murine model of liver damage. J Appl Toxicology: JAT 33(9):970–979. https://doi.org/10.1002/jat.2788
Arumugam TV, Baik SH, Balaganapathy P, Sobey CG, Mattson MP, Jo DG (2018) Notch signaling and neuronal death in stroke. Prog Neurobiol 165:103–116. https://doi.org/10.1016/j.pneurobio.2018.03.002
Article PubMed CAS Google Scholar
Beutler E, Doron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–8
Bosoi CR, Rose CF (2013) Oxidative stress: a systemic factor implicated in the pathogenesis of hepatic encephalopathy. Metab Brain Dis 28(2):175–178. https://doi.org/10.1007/s11011-012-9351-5
Article PubMed CAS Google Scholar
Butterworth RF, Norenberg MD, Felipo V, Ferenci P, Albrecht J, Blei AT (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver International: Official J Int Association Study Liver 29(6):783–788. https://doi.org/10.1111/j.1478-3231.2009.02034.x
Cefalu WT, Leiter LA, de Bruin TW, Gause-Nilsson I, Sugg J, Parikh SJ (2015) Dapagliflozin’s effects on glycemia and cardiovascular risk factors in High-Risk patients with type 2 diabetes: A 24-Week, multicenter, randomized, Double-Blind, Placebo-Controlled study with a 28-Week extension. Diabetes Care 38(7):1218–1227. https://doi.org/10.2337/dc14-0315Epub 2015 Apr 7. PMID: 25852208; PMCID: PMC4831907
Article PubMed PubMed Central CAS Google Scholar
Chastagner P, Rubinstein E, Brou C (2017) Ligand-activated Notch undergoes DTX4-mediated ubiquitylation and bilateral endocytosis before ADAM10 processing. Sci Signal. https://doi.org/10.1126/scisignal.aag2989
Chen P, Liang L, Dai Y, Hui S (2024) The role and mechanism of Dapagliflozin in alzheimer disease: a review. Medicine 103(39):e39687. https://doi.org/10.1097/MD.0000000000039687
Article PubMed PubMed Central CAS Google Scholar
Culling CF, Allison RT, Barr WT (1985) Wellington: butterworth and Co. Ltd. Cellular Pathology Technique, 4th edn. pp 148–9
Dabrowska K, Skowronska K, Popek M, Obara-Michlewska M, Albrecht J, Zielinska M (2018) Roles of glutamate and glutamine transport in ammonia neurotoxicity: state of the art and question marks. Endocr Metab Immune Disord Drug Targets 18(4):306–315. https://doi.org/10.2174/1871520618666171219124427
Article PubMed CAS Google Scholar
Dhillon S, Dapagliflozin (2019) A Review in Type 2 Diabetes. Drugs. ;79(10):1135–1146. https://doi.org/10.1007/s40265-019-01148-3. Erratum in: Drugs. 2019;79(18):2013. doi: 10.1007/s40265-019-01239-1. PMID: 31236801; PMCID: PMC6879440
Donoiu I, Târtea G, Sfredel V, Raicea V, Țucă AM, Preda AN, Cozma D, Vătășescu R (2023) Dapagliflozin ameliorates neural damage in the heart and kidney of diabetic mice. Biomedicines 11(12):3324. https://doi.org/10.3390/biomedicines11123324PMID: 38137545; PMCID: PMC10741899
Article PubMed PubMed Central CAS Google Scholar
El Khiat A, El Hiba O, Tamegart L, Rais H, Fdil N, Sellami S, El Mokhtar MA, Gamrani H (2022) Time dependent alteration of locomotor behavior in rat with acute liver failure induced cerebellar neuroinflammation and neuro-astroglial damage. J Chem Neuroanat 119:102055. https://doi.org/10.1016/j.jchemneu.2021.102055
Article PubMed CAS Google Scholar
El-Safty H, Ismail A, Abdelsalam RM, El-Sahar AE, Saad MA (2022) Dapagliflozin diminishes memory and cognition impairment in streptozotocin induced diabetes through its effect on Wnt/β-catenin and CREB pathway. Brain Res Bull 181:109–120. https://doi.org/10.1016/j.brainresbull.2022.01.017
Article PubMed CAS Google Scholar
ElMahdy MK, Helal MG, Ebrahim TM (2020) Potential anti-inflammatory effect of Dapagliflozin in HCHF diet- induced fatty liver degeneration through inhibition of TNF-α, IL-1β, and IL-18 in rat liver. Int Immunopharmacol 86:106730. https://doi.org/10.1016/j.intimp.2020.106730
Article PubMed CAS Google Scholar
Enerson BE, Drewes LR (2006) The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metabolism: Official J Int Soc Cereb Blood Flow Metabolism 26(7):959–973. https://doi.org/10.1038/sj.jcbfm.9600249
Erdogan MA, Yusuf D, Christy J et al (2018) Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol 18:81. https://doi.org/10.1186/s12883-018-1086-4
Article PubMed PubMed Central CAS Google Scholar
Faridvand Y, Kazemzadeh H, Vahedian V, Mirzajanzadeh P, Nejabati HR, Safaie N, Maroufi NF, Pezeshkian M, Nouri M, Jodati A (2022) Dapagliflozin attenuates high glucose-induced endothelial cell apoptosis and inflammation through AMPK/SIRT1 activation. Clin Exp Pharmacol Physiol 49(6):643–651. https://doi.org/10.1111/1440-1681.13638
Article PubMed CAS Google Scholar
Ferah Okkay I, Okkay U, Gundogdu OL, Bayram C, Mendil AS, Ertugrul MS, Hacimuftuoglu A (2022) Syringic acid protects against thioacetamide-induced hepatic encephalopathy: behavioral, biochemical, and molecular evidence. Neurosci Lett 769:136385. https://doi.org/10.1016/j.neulet.2021.136385
Article PubMed CAS Google Scholar
Gamal NM, Bakly WE, Saad SST, Waseef DAAE, El-Shal AS, Ezzat W, Magdy YM (2025) Dapagliflozin mitigates cognitive deficits in a rat model of chronic restrained stress by addressing insulin resistance and mitochondrial dysfunction. Naunyn Schmiedebergs Arch Pharmacol. May 21. https://doi.org/10.1007/s00210-025-04136-5. Epub ahead of print. PMID: 40397120
Gow AG (2017) Hepatic encephalopathy. Vet Clin North Am Small Anim Pract 47(3):585–599.
Comments (0)