Curcumin treatment reduces motor impairments and protects against rotenone-induced neurodegeneration in a rat model of Parkinson disease

Abdelsalam RM, Safar MM (2015) Neuroprotective effects of vildagliptin in rat rotenone parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J Neurochem 133(5):700–707

Article  PubMed  Google Scholar 

Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75

Article  PubMed  Google Scholar 

Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324

Article  PubMed  Google Scholar 

Banasikowski TJ, Beninger RJ (2012) Haloperidol conditioned catalepsy in rats: a possible role for D1-like receptors. Int J Neuropsychopharmacol 15(10):1525–1534

Article  PubMed  Google Scholar 

Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of parkinson’s disease. Nat Neurosci 3(12):1301–1306

Article  PubMed  Google Scholar 

Bevan MD, Bolam JP, Cholinergic (1995) GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15(11):7105–7120

Article  PubMed  PubMed Central  Google Scholar 

Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

Article  PubMed  Google Scholar 

Bisbal M, Sanchez M (2019) Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res 14(5):762–766

Article  PubMed  PubMed Central  Google Scholar 

Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 9:44

Article  PubMed  PubMed Central  Google Scholar 

Bricker B, Sampson D, Ablordeppey SY (2014) Evaluation of the potential of antipsychotic agents to induce catalepsy in rats: assessment of a new, commercially available, semi-automated instrument. Pharmacol Biochem Behav 120:109–116

Article  PubMed  PubMed Central  Google Scholar 

Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of parkinson’s disease. Neurobiol Dis 34(2):279–290

Article  PubMed  PubMed Central  Google Scholar 

Carlson KF, Kehle SM, Meis LA, Greer N, Macdonald R, Rutks I, Sayer NA, Dobscha SK, Wilt TJ (2011) Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder: a systematic review of the evidence. J Head Trauma Rehabil 26(2):103–115

Article  PubMed  Google Scholar 

Chambers NE, Lanza K, Bishop C (2020) Pedunculopontine nucleus degeneration contributes to both motor and non-motor symptoms of parkinson’s disease. Front Pharmacol 10:1494

Article  PubMed  PubMed Central  Google Scholar 

Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280(48):40364–40374

Article  PubMed  Google Scholar 

Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683 Apr 23–30

Article  PubMed  Google Scholar 

Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates; The Central Role of Enzymes as Biological Catalysts, Sunderland

Costa C, Sgobio C, Siliquini S, Tozzi A, Tantucci M, Ghiglieri V, Di Filippo M, Pendolino V, de Iure A, Marti M, Morari M, Spillantini MG, Latagliata EC, Pascucci T, Puglisi-Allegra S, Gardoni F, Di Luca M, Picconi B, Calabresi P (2012) Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 135(Pt 6):1884–1899

Article  PubMed  Google Scholar 

Çınar R, Yıldızhan K (2025) Curcumin protects against MPP+-induced neurotoxicity in SH-SY5Y cells by modulating the TRPV4 channel. Mol Biol Rep 52(1):255

Article  PubMed  Google Scholar 

Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CN, David O, Torres-Martinez N, Piallat B (2023) Excessive daytime sleepiness in a model of Parkinson’s disease improved by low-frequency stimulation of the pedunculopontine nucleus. NPJ Parkinsons Dis 9(1):9

Article  PubMed  PubMed Central  Google Scholar 

Darbinyan LV, Simonyan KV, Hambardzumyan LE, Manukyan LP, Badalyan SH, Sarkisian VH (2022) Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction. Metab Brain Dis 37(4):1111–1118

Article  PubMed  Google Scholar 

Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Khalaji N, Sarkisian VH (2017) Protective effects of curcumin against rotenone-induced rat model of parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32(6):1791–1803

Article  PubMed  Google Scholar 

Darbinyan LV, Simonyan KV, Hambardzumyan LE, Simonyan MA, Simonyan RM, Manukyan LP (2023) Membrane-stabilizing and protective effects of curcumin in a rotenone-induced rat model of Parkinson disease. Metab Brain Dis 38(7):2457–2464

Article  PubMed  Google Scholar 

Di Giovanni G, Chagraoui A, Puginier E, Galati S, De Deurwaerdère P (2019) Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: implication in the mechanism of L-DOPA. Neurobiol Dis 128:9–18

Article  PubMed  Google Scholar 

Fikry H, Saleh LA, Abdel Gawad S (2022) Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced parkinson’s disease model. CNS Neurosci Ther 28(5):732–748

Article  PubMed  PubMed Central  Google Scholar 

French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in parkinson’s disease. Front Aging Neurosci 10:99

Article  PubMed  PubMed Central  Google Scholar 

Gao L, Cao M, Du GH, Qin XM (2022) Huangqin decoction exerts beneficial effects on Rotenone-induced rat model of Parkinson’s disease by improving mitochondrial dysfunction and alleviating metabolic abnormality of mitochondria. Front Aging Neurosci 14:911924

Article  PubMed  PubMed Central  Google Scholar 

Gharbawie OA, Whishaw PA, Whishaw IQ (2004) The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test. Behav Brain Res 151(1–2):125–135

Article  PubMed  Google Scholar 

Guariglia M, Saba F, Rosso C, Bugianesi E (2023) Molecular mechanisms of curcumin in the pathogenesis of metabolic dysfunction associated steatotic liver disease. Nutrients 15(24):5053

Article  PubMed  PubMed Central  Google Scholar 

Guo Z, Ruan Z, Zhang D, Liu X, Hou L, Wang Q (2022) Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. Chemosphere 291(Pt 2):132982

Article  PubMed  Google Scholar 

Huang CW, Lin KM, Hung TY, Chuang YC, Wu SN (2018) Multiple actions of rotenone, an inhibitor of mitochondrial respiratory chain, on ionic currents and miniature end-plate potential in mouse hippocampal (mHippoE-14) neurons. Cell Physiol Biochem 47(1):330–343

Article  PubMed  Google Scholar 

Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I (2019) Contribution of the GABAergic system to non-motor manifestations in premotor and early stages of parkinson’s disease. Front Pharmacol 10:1294

Article  PubMed  PubMed Central  Google Scholar 

Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M (2023) Rotenone-induced model of parkinson’s disease: beyond mitochondrial complex I inhibition. Mol Neurobiol 60(4):1929–1948

Article  PubMed  Google Scholar 

Inglis WL, Olmstead MC, Robbins TW (2000) Pedunculopontine tegmental nucleus lesions impair stimulus–reward learning in autoshaping and conditioned reinforcement paradigms. Behav Neurosci 114(2):285–294

Article  PubMed  Google Scholar 

Inglis WL, Olmstead MC, Robbins TW (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav Brain Res 123(2):117–131

Article  PubMed 

Comments (0)

No login
gif