Abdelsalam RM, Safar MM (2015) Neuroprotective effects of vildagliptin in rat rotenone parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J Neurochem 133(5):700–707
Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75
Alam M, Schmidt WJ (2002) Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res 136(1):317–324
Banasikowski TJ, Beninger RJ (2012) Haloperidol conditioned catalepsy in rats: a possible role for D1-like receptors. Int J Neuropsychopharmacol 15(10):1525–1534
Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of parkinson’s disease. Nat Neurosci 3(12):1301–1306
Bevan MD, Bolam JP, Cholinergic (1995) GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15(11):7105–7120
Article PubMed PubMed Central Google Scholar
Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211
Bisbal M, Sanchez M (2019) Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res 14(5):762–766
Article PubMed PubMed Central Google Scholar
Breit S, Kupferberg A, Rogler G, Hasler G (2018) Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry 9:44
Article PubMed PubMed Central Google Scholar
Bricker B, Sampson D, Ablordeppey SY (2014) Evaluation of the potential of antipsychotic agents to induce catalepsy in rats: assessment of a new, commercially available, semi-automated instrument. Pharmacol Biochem Behav 120:109–116
Article PubMed PubMed Central Google Scholar
Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT (2009) A highly reproducible rotenone model of parkinson’s disease. Neurobiol Dis 34(2):279–290
Article PubMed PubMed Central Google Scholar
Carlson KF, Kehle SM, Meis LA, Greer N, Macdonald R, Rutks I, Sayer NA, Dobscha SK, Wilt TJ (2011) Prevalence, assessment, and treatment of mild traumatic brain injury and posttraumatic stress disorder: a systematic review of the evidence. J Head Trauma Rehabil 26(2):103–115
Chambers NE, Lanza K, Bishop C (2020) Pedunculopontine nucleus degeneration contributes to both motor and non-motor symptoms of parkinson’s disease. Front Pharmacol 10:1494
Article PubMed PubMed Central Google Scholar
Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, Mucke L, Gan L (2005) SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 280(48):40364–40374
Connolly BS, Lang AE (2014) Pharmacological treatment of Parkinson disease: a review. JAMA 311(16):1670–1683 Apr 23–30
Cooper GM (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates; The Central Role of Enzymes as Biological Catalysts, Sunderland
Costa C, Sgobio C, Siliquini S, Tozzi A, Tantucci M, Ghiglieri V, Di Filippo M, Pendolino V, de Iure A, Marti M, Morari M, Spillantini MG, Latagliata EC, Pascucci T, Puglisi-Allegra S, Gardoni F, Di Luca M, Picconi B, Calabresi P (2012) Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain 135(Pt 6):1884–1899
Çınar R, Yıldızhan K (2025) Curcumin protects against MPP+-induced neurotoxicity in SH-SY5Y cells by modulating the TRPV4 channel. Mol Biol Rep 52(1):255
Davin A, Chabardès S, Devergnas A, Benstaali C, Gutekunst CN, David O, Torres-Martinez N, Piallat B (2023) Excessive daytime sleepiness in a model of Parkinson’s disease improved by low-frequency stimulation of the pedunculopontine nucleus. NPJ Parkinsons Dis 9(1):9
Article PubMed PubMed Central Google Scholar
Darbinyan LV, Simonyan KV, Hambardzumyan LE, Manukyan LP, Badalyan SH, Sarkisian VH (2022) Protective effect of curcumin against rotenone-induced substantia nigra pars compacta neuronal dysfunction. Metab Brain Dis 37(4):1111–1118
Darbinyan LV, Hambardzumyan LE, Simonyan KV, Chavushyan VA, Manukyan LP, Badalyan SA, Khalaji N, Sarkisian VH (2017) Protective effects of curcumin against rotenone-induced rat model of parkinson’s disease: in vivo electrophysiological and behavioral study. Metab Brain Dis 32(6):1791–1803
Darbinyan LV, Simonyan KV, Hambardzumyan LE, Simonyan MA, Simonyan RM, Manukyan LP (2023) Membrane-stabilizing and protective effects of curcumin in a rotenone-induced rat model of Parkinson disease. Metab Brain Dis 38(7):2457–2464
Di Giovanni G, Chagraoui A, Puginier E, Galati S, De Deurwaerdère P (2019) Reciprocal interaction between monoaminergic systems and the pedunculopontine nucleus: implication in the mechanism of L-DOPA. Neurobiol Dis 128:9–18
Fikry H, Saleh LA, Abdel Gawad S (2022) Neuroprotective effects of curcumin on the cerebellum in a rotenone-induced parkinson’s disease model. CNS Neurosci Ther 28(5):732–748
Article PubMed PubMed Central Google Scholar
French IT, Muthusamy KA (2018) A review of the pedunculopontine nucleus in parkinson’s disease. Front Aging Neurosci 10:99
Article PubMed PubMed Central Google Scholar
Gao L, Cao M, Du GH, Qin XM (2022) Huangqin decoction exerts beneficial effects on Rotenone-induced rat model of Parkinson’s disease by improving mitochondrial dysfunction and alleviating metabolic abnormality of mitochondria. Front Aging Neurosci 14:911924
Article PubMed PubMed Central Google Scholar
Gharbawie OA, Whishaw PA, Whishaw IQ (2004) The topography of three-dimensional exploration: a new quantification of vertical and horizontal exploration, postural support, and exploratory bouts in the cylinder test. Behav Brain Res 151(1–2):125–135
Guariglia M, Saba F, Rosso C, Bugianesi E (2023) Molecular mechanisms of curcumin in the pathogenesis of metabolic dysfunction associated steatotic liver disease. Nutrients 15(24):5053
Article PubMed PubMed Central Google Scholar
Guo Z, Ruan Z, Zhang D, Liu X, Hou L, Wang Q (2022) Rotenone impairs learning and memory in mice through microglia-mediated blood brain barrier disruption and neuronal apoptosis. Chemosphere 291(Pt 2):132982
Huang CW, Lin KM, Hung TY, Chuang YC, Wu SN (2018) Multiple actions of rotenone, an inhibitor of mitochondrial respiratory chain, on ionic currents and miniature end-plate potential in mouse hippocampal (mHippoE-14) neurons. Cell Physiol Biochem 47(1):330–343
Murueta-Goyena A, Andikoetxea A, Gómez-Esteban JC, Gabilondo I (2019) Contribution of the GABAergic system to non-motor manifestations in premotor and early stages of parkinson’s disease. Front Pharmacol 10:1294
Article PubMed PubMed Central Google Scholar
Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M (2023) Rotenone-induced model of parkinson’s disease: beyond mitochondrial complex I inhibition. Mol Neurobiol 60(4):1929–1948
Inglis WL, Olmstead MC, Robbins TW (2000) Pedunculopontine tegmental nucleus lesions impair stimulus–reward learning in autoshaping and conditioned reinforcement paradigms. Behav Neurosci 114(2):285–294
Inglis WL, Olmstead MC, Robbins TW (2001) Selective deficits in attentional performance on the 5-choice serial reaction time task following pedunculopontine tegmental nucleus lesions. Behav Brain Res 123(2):117–131
Comments (0)