Nitisinone treatment protect hereditary tyrosinemia type I patients against inflammation, DNA and protein oxidative damage by decreasing succinylacetone levels

Aksenov MY, Markesbery WR (2001) Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci Lett 302(2–3):141–145. https://doi.org/10.1016/s0304-3940(01)01636-6

Article  CAS  PubMed  Google Scholar 

Antonini R, Scaini G, Michels M, Matias MBD, Schuck PF, Ferreira GC, De Oliveira J, Dal-Pizzol F, Streck EL (2020) Effects of omega-3 fatty acids supplementation on inflammatory parameters after chronic administration of L-tyrosine. Metab Brain Dis 35:295–303. https://doi.org/10.1007/s11011-019-00525-x

Article  CAS  PubMed  Google Scholar 

Aktuglu Zeybek AC, Kiykim E, Neselioglu S et al (2022) Evaluation of dynamicthiol/disulfide homeostasis in hereditary tyrosinemia type 1 patients. Pediatr Res 92(2):474–479.https://doi.org/10.1038/s41390-021-01770-6

Barschak AG, Sitta A, Deon M, de Oliveira MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21(4):279–286. https://doi.org/10.1007/s11011-006-9030-5

Article  CAS  PubMed  Google Scholar 

Chakrapani A, Gissen P, McKiernan P (2012) Disorders of tyrosine Metabolism. Inborn metabolic diseases. Springer International Publishing, Berlin

Google Scholar 

Chinsky JM, Singh R, Ficicioglu C, Van Karnebeek CDM, Grompe M, Mitchell G, Waisbren SE, Gucsavas-Calikoglu M, Wasserstein MP, CoakleY K, Scott CR (2017) Diagnosis and treatment of tyrosinemia type I: a US and Canadian consensus group review and recommendations. Genet Med 19(12):1380–1395. https://doi.org/10.1038/gim.2017.101

Article  Google Scholar 

Colemonts-Vroninks H, Neuckermans J, Marcelis L, Claes P, Branson S, Casimir G, Goyens P, Martens GA, Vanhaecke T, De Kock J (2020) Oxidative stress, glutathione metabolism, and liver regeneration pathways are activated in hereditary tyrosinemia type 1 mice upon short-term nitisinone discontinuation. Genes 12:3. https://doi.org/10.3390/genes12010003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Collier HB (1971) A study of the determination of 5-aminolevulinate hydro-lyase (delta-aminolevulinate dehydratase) activity in hemolysates of human erythrocytes. Clin Biochem 4(1–6):222–232. https://doi.org/10.1016/s0009-9120(71)91692-4

Article  CAS  PubMed  Google Scholar 

Das A (2017) Clinical utility of Nitisinone for the treatment of hereditary tyrosinemia type-1 (HT-1). The application of clinical genetics 10:43–48. https://doi.org/10.2147/TACG.S113310

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Prá SDT, Ferreira GK, Carvalho-Silva M, Vieira JS, Scaini G, Leffa DD, Fagundes GE, Bristot BN, Borges GD, Ferreira GC, Schuck PF, Andrade VM, Streck EL (2014) L-tyrosine induces DNA damage in brain and blood of rats. Neurochem Res 39:202–207. https://doi.org/10.1007/s11064-013-1207-9

Article  CAS  PubMed  Google Scholar 

Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, Ferreira GK, Scaini G, Carvalho-Silva M, Gomes LM, Borges LS, Vieira JS, Constantino LS, Ferreira GC, Schuck PF, Streck EL (2013) Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox Res 23(4):327–335. https://doi.org/10.1007/s12640-012-9345-4

Article  CAS  PubMed  Google Scholar 

Giguère Y, Berthier MT (2017) Newborn screening for hereditary tyrosinemia type I in Québec: Update. hereditary tyrosinemia, advances in experimental medicine and biology. Springer Int Publishing 139–146. https://doi.org/10.1007/978-3-319-55780-9_13

Hanif H, Ali MJ, Susheela AT, Khan IW, Luna-Cuadros MA, Khan MM, Lau DT (2022) Update on the applications and limitations of alpha-fetoprotein for hepatocellular carcinoma. World J Gastroenterol 14(2):216–229. https://doi.org/10.3748/wjg.v28.i2.216

Article  CAS  Google Scholar 

Joseph MH, Marsden CA (1986) Amino acids and small peptides. In: Lim CK (ed) HPLC of small molecules. IRL, Oxford, pp 13–28

Lindblad B, Lindstedt S, Steen G (1977) On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci 74(10):4641–4645. https://doi.org/10.1073/pnas.74.10.4641

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lindstedt S, Holme E, Lock EA, Hjalmarson O, Strandvik B (1992) Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340(8823):813–817. https://doi.org/10.1016/0140-6736(92)92685-9

Article  CAS  PubMed  Google Scholar 

Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L (2014) The role of oxidative stress during inflammatory processes. Biol Chem 395:203–230. https://doi.org/10.1515/hsz-2013-0241

Article  CAS  PubMed  Google Scholar 

Macêdo LGRP, Carvalho-Silva M, Ferreira GK, Vieira JS, Olegário N, Gonçalves RC, Vuolo FS, Ferreira GC, Schuck PF, Dal-Pizzol F, Streck EL (2013) Effect of acute administration of L-tyrosine on oxidative stress parameters in brain of young rats. Neurochem Res 38:2625–2630. https://doi.org/10.1007/s11064-013-1180-3

Article  CAS  PubMed  Google Scholar 

Mitchell G, Grompe M, Lambert M, Tanguay R (2000) Hypertyrosinemia. In: Scriver CR, Beaudet AL, Sly WS, Valle D (ed) The Metabolic Basis of Inherited Disease, 8th ed. New York, pp 1777–1806

Monteiro HP, Abdalla SP, Bechara JH (1989) Free radical generation during b-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch Biochem Biophys 271(1):206–216. https://doi.org/10.1016/0003-9861(89)90271-3

Article  CAS  PubMed  Google Scholar 

Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13:349–361. https://doi.org/10.1038/nri3423

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

Article  CAS  PubMed  Google Scholar 

Okin D, Medzhitov R (2012) Evolution of inflammatory diseases. Curr Biol 22:R733–740. https://doi.org/10.1016/j.cub.2012.07.029

Article  CAS  PubMed  PubMed Central  Google Scholar 

Royer LO, Knudsen FS, De Oliveira MA, Tavares MFM, Bechara EJH (2004) Succinylacetone oxidation by oxygen/peroxynitrite: a possible source of reactive intermediates in hereditary tyrosinemia type I. Chem Res Toxicol 17:598–604. https://doi.org/10.1021/tx0342520

Article  CAS  PubMed  Google Scholar 

Ruppert S, Kelsey G, Schedl A, Schmid E, Thies E, Schütz G (1992) Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev 6(8):1430–1443. https://doi.org/10.1101/gad.6.8.1430

Article  CAS  PubMed  Google Scholar 

Sgaravatti AM, Vargas BA, Zandoná BR, Deckmann KB, Rockenbach FJ, Moraes TB, Monserrat JM, Sgarbi MB, Pederzolli CD, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS (2008) Tyrosine promotes oxidative stress in cerebral cortex of young rats. Intl J Devlp Neurosci 26:551–559. https://doi.org/10.1016/j.ijdevneu.2008.05.007

Article  CAS  Google Scholar 

Sgaravatti AM, Magnusson AS, De Oliveira AS, Rosa AP, Mescka CP, Zanin FR, Pederzolli CD, Wyse ATS, Wannmacher CMD, Wajner M, Dutra-Filho CS (2009) Tyrosine administration decreases glutathione and stimulates lipid and protein oxidation in rat cerebral cortex. Metab Brain Dis 24:415–425. https://doi.org/10.1007/s11011-009-9153-6

Article  CAS  PubMed  Google Scholar 

Varella PPV, Forte WCN (2001) Cytokines: a review. Rev Bras Alerg Imunopatol 24(4):146–154

Google Scholar 

Comments (0)

No login
gif