Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, Hoang PT, Gautier O, Kaltschmidt JA, Greenleaf WJ, Gitler AD (2021) Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 24(4):572–583. https://doi.org/10.1038/s41593-020-00795-0
Article CAS PubMed PubMed Central Google Scholar
Castro R, Taetzsch T, Vaughan SK, Godbe K, Chappell J, Settlage RE, Valdez G (2020) Specific labeling of synaptic schwann cells reveals unique cellular and molecular features. Elife 9:1–19. https://doi.org/10.7554/eLife.56935
Cescon M, Gregorio I, Eiber N, Borgia D, Fusto A, Sabatelli P, Scorzeto M, Megighian A, Pegoraro E, Hashemolhosseini S, Bonaldo P (2018) Collagen VI is required for the structural and functional integrity of the neuromuscular junction. Acta Neuropathol 136(3):483–499. https://doi.org/10.1007/s00401-018-1860-9
Article CAS PubMed Google Scholar
Dalkin W, Taetzsch T, Valdez G (2016) The fibular nerve injury method: a reliable assay to identify and test factors that repair neuromuscular junctions. J Vis Exp 114. https://doi.org/10.3791/54186
Gerber D, Pereira JA, Gerber J, Tan G, Dimitrieva S, Yángüez E, Suter U (2021) Transcriptional profiling of mouse peripheral nerves to the single-cell level to build a sciatic nerve ATlas (SNAT). ELife 10. https://doi.org/10.7554/eLife.58591
Gordon MK, Hahn RA (2010) Collagens. Cell Tissue Res 339(1):247–257. https://doi.org/10.1007/s00441-009-0844-4
Article CAS PubMed Google Scholar
Gorlov IP, Byun J, Gorlova OY, Aparicio AM, Efstathiou E, Logothetis CJ (2009) Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Med Genomics 2(1):48. https://doi.org/10.1186/1755-8794-2-48
Article CAS PubMed PubMed Central Google Scholar
Gould TW, Ko C-P, Willison H, Robitaille R (2025) Perisynaptic Schwann cells: guardians of neuromuscular junction integrity and function in health and disease. Cold Spring Harb Perspect Biol 17(1):a041362. https://doi.org/10.1101/cshperspect.a041362
Halstead SK, Morrison I, O’Hanlon GM, Humphreys PD, Goodfellow JA, Plomp JJ, Willison HJ (2005) Anti-disialosyl antibodies mediate selective neuronal or Schwann cell injury at mouse neuromuscular junctions. Glia 52(3):177–189. https://doi.org/10.1002/glia.20228
Ham AS, Lin S, Tse A, Thürkauf M, McGowan TJ, Jörin L, Oliveri F, Rüegg MA (2025) Single-nuclei sequencing of skeletal muscle reveals subsynaptic-specific transcripts involved in neuromuscular junction maintenance. Nat Commun 16(1):2220. https://doi.org/10.1038/s41467-025-57487-1
Article CAS PubMed PubMed Central Google Scholar
Hari L, Miescher I, Shakhova O, Suter U, Chin L, Taketo M, Richardson WD, Kessaris N, Sommer L (2012) Temporal control of neural crest lineage generation by Wnt/β-catenin signaling. Development 139(12):2107–2117. https://doi.org/10.1242/dev.073064
Article CAS PubMed Google Scholar
Hastings RL, Valdez G (2024) Origin, identity, and function of terminal Schwann cells. Trends Neurosci 47(6):432–446. https://doi.org/10.1016/j.tins.2024.03.007
Article CAS PubMed PubMed Central Google Scholar
Hastings RL, Mikesh M, Lee YI, Thompson WJ (2020) Morphological remodeling during recovery of the neuromuscular junction from terminal Schwann cell ablation in adult mice. Sci Rep 10(1):11132. https://doi.org/10.1038/s41598-020-67630-1
Article CAS PubMed PubMed Central Google Scholar
Hastings RL, Avila MF, Suneby E, Juros D, O’Young A, Peres da Silva J, Valdez G (2023) Cellular and molecular evidence that synaptic Schwann cells contribute to aging of mouse neuromuscular junctions. Aging Cell. https://doi.org/10.1111/acel.13981
Article PubMed PubMed Central Google Scholar
Heikkinen A, Härönen H, Norman O, Pihlajaniemi T (2020) Collagen XIII and other ECM components in the assembly and disease of the neuromuscular junction. Anat Rec 303(6):1653–1663. https://doi.org/10.1002/ar.24092
Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Huang C-S, Huang C-J, Lai L-C, Chuang EY (2013) Concurrent gene signatures for Han Chinese breast cancers. PLoS ONE 8(10):e76421. https://doi.org/10.1371/journal.pone.0076421
Article CAS PubMed PubMed Central Google Scholar
Ishihara E, Takahashi S, Fukaya R, Ohta S, Yoshida K, Toda M (2019) Identification of KLRC2 as a candidate marker for brain tumor-initiating cells. Neurol Res 41(11):1043–1049. https://doi.org/10.1080/01616412.2019.1672390
Article CAS PubMed Google Scholar
Jung M, Dourado M, Maksymetz J, Jacobson A, Laufer BI, Baca M, Foreman O, Hackos DH, Riol-Blanco L, Kaminker JS (2023) Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. Nat Commun 14(1):366. https://doi.org/10.1038/s41467-023-36014-0
Article CAS PubMed PubMed Central Google Scholar
Kang H, Tian L, Thompson W (2003) Terminal Schwann cells guide the reinnervation of muscle after nerve injury. J Neurocytol 32(5–8):975–985. https://doi.org/10.1023/B:NEUR.0000020636.27222.2d
Article CAS PubMed Google Scholar
Kang H, Tian L, Mikesh M, Lichtman JW, Thompson WJ (2014) Terminal schwann cells participate in neuromuscular synapse remodeling during reinnervation following nerve injury. J Neurosci 34(18):6323–6333. https://doi.org/10.1523/JNEUROSCI.4673-13.2014
Article CAS PubMed PubMed Central Google Scholar
Kang H, Tian L, Thompson WJ (2019) Schwann cell guidance of nerve growth between synaptic sites explains changes in the pattern of muscle innervation and remodeling of synaptic sites following peripheral nerve injuries. J Comp Neurol 527(8):1388–1400. https://doi.org/10.1002/cne.24625
Article CAS PubMed Google Scholar
Khan MI, Choi S, Zahid M, Ahmad H, Ali R, Jelani M, Kang C (2018) Whole-exome sequencing analysis reveals co-segregation of a COL20A1 missense mutation in a Pakistani family with striate palmoplantar keratoderma. Genes Genomics 40(7):789–795. https://doi.org/10.1007/s13258-018-0695-z
Article CAS PubMed Google Scholar
Koch M, Foley JE, Hahn R, Zhou P, Burgeson RE, Gerecke DR, Gordon MK (2001) α1(XX) collagen, a new member of the collagen subfamily, fibril-associated collagens with interrupted triple helices. J Biol Chem 276(25):23120–23126. https://doi.org/10.1074/jbc.M009912200
Article CAS PubMed Google Scholar
Lakso M, Pichel JG, Gorman JR, Sauer B, Okamoto Y, Lee E, Alt FW, Westphal H (1996) Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93(12):5860–5865. https://doi.org/10.1073/pnas.93.12.5860
Article CAS PubMed PubMed Central Google Scholar
Lee YI, Li Y, Mikesh M, Smith I, Nave KA, Schwab MH, Thompson WJ (2016) Neuregulin1 displayed on motor axons regulates terminal Schwann cell-mediated synapse elimination at developing neuromuscular junctions. Proc Natl Acad Sci U S A 113(4):E479–E487. https://doi.org/10.1073/pnas.1519156113
Article CAS PubMed PubMed Central Google Scholar
Matsuoka T, Ahlberg PE, Kessaris N, Iannarelli P, Dennehy U, Richardson WD, McMahon AP, Koentges G (2005) Neural crest origins of the neck and shoulder. Nature 436(7049):347–355. https://doi.org/10.1038/nature03837
Article CAS PubMed PubMed Central Google Scholar
Reddy LV, Koirala S, Sugiura Y, Herrera AA, Ko CP (2003) Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40(3):563–580. https://doi.org/10.1016/S0896-6273(03)00682-2
Article CAS PubMed Google Scholar
Reynolds ML, Woolf CJ (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21(1):50–66. https://doi.org/10.1007/BF01206897
Comments (0)