Exploring Ciliary Mechanisms in the Causation of Hydrocephalus in Humans—Similarities and Differences from Animal Models

Adams M, Simms RJ, Abdelhamed Z et al (2012) A meckelin-filamin A interaction mediates ciliogenesis. Hum Mol Genet 21(6):1272–1286. https://doi.org/10.1093/hmg/ddr557

Article  CAS  PubMed  Google Scholar 

Alby C, Piquand K, Huber C et al (2015) Mutations in KIAA0586 cause lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly syndrome. Am J Hum Genet 97(2):311–318. https://doi.org/10.1016/j.ajhg.2015.06.003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Jezawi NK, Al-Shamsi AM, Suleiman J et al (2018) Compound heterozygous variants in the multiple PDZ domain protein (MPDZ) cause a case of mild non-progressive communicating hydrocephalus. BMC Med Genet 19(1):34. https://doi.org/10.1186/s12881-018-0540-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allache R, Lachance S, Guyot MC et al (2013) Novel mutations in Lrp6 orthologs in mouse and human neural tube defects affect a highly dosage-sensitive Wnt non-canonical planar cell polarity pathway. Hum Mol Genet 23(7):1687–1699. https://doi.org/10.1093/hmg/ddt558

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amirav I, Wallmeier J, Loges NT et al (2016) Systematic analysis of CCNO variants in a defined population: implications for clinical phenotype and differential diagnosis. Hum Mutat 37(Apr):396–405. https://doi.org/10.1002/humu.22957

Article  CAS  PubMed  Google Scholar 

Antaki D, Guevara J, Maihofer AX et al (2022) A phenotypic spectrum of autism is attributable to the combined effects of rare variants, polygenic risk and sex. Nat Genet 54(9):1284–1292. https://doi.org/10.1038/s41588-022-01064-5

Article  CAS  PubMed  Google Scholar 

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB, Christensen ST (2019) Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol 15(4):199–219. https://doi.org/10.1038/s41581-019-0116-9

Article  PubMed  PubMed Central  Google Scholar 

Aruga J, Millen KJ (2018) ZIC1 function in normal cerebellar development and human developmental pathology. Adv Exp Med Biol 1046:249–268. https://doi.org/10.1007/978-981-10-7311-3_13

Article  CAS  PubMed  Google Scholar 

Bangs F, Anderson KV (2017) Primary cilia and mammalian hedgehog signaling. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a028175

Article  PubMed  PubMed Central  Google Scholar 

Banizs B, Pike MM, Millican CL et al (2005) Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132(23):5329–5339. https://doi.org/10.1242/dev.02153

Article  CAS  PubMed  Google Scholar 

Behan L, Dimitrov BD, Kuehni CE et al (Apr2016) PICADAR: a diagnostic predictive tool for primary ciliary dyskinesia. Eur Respir J 47(4):1103–1112. https://doi.org/10.1183/13993003.01551-2015

Article  PubMed  PubMed Central  Google Scholar 

Bellchambers HM, Ware SM (2021) Loss of Zic3 impairs planar cell polarity leading to abnormal left-right signaling, heart defects and neural tube defects. Hum Mol Genet 30(24):2402–2415. https://doi.org/10.1093/hmg/ddab195

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bernatik O, Paclikova P, Kotrbova A, Bryja V, Cajanek L (2021) Primary cilia formation does not rely on WNT/β-catenin signaling. Front Cell Dev Biol 9:623753. https://doi.org/10.3389/fcell.2021.623753

Article  PubMed  PubMed Central  Google Scholar 

Beschorner R, Waidelich J, Trautmann K, Psaras T, Schittenhelm J (Aug2013) Notch receptors in human choroid plexus tumors. Histol Histopathol 28(8):1055–1063. https://doi.org/10.14670/hh-28.1055

Article  CAS  PubMed  Google Scholar 

Bieder A, Chandrasekar G, Wason A et al (2023) Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 24(1):20. https://doi.org/10.1186/s12860-023-00483-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bisiak F, McCarthy AA (2019) Structure and function of roundabout receptors. Subcell Biochem 93:291–319. https://doi.org/10.1007/978-3-030-28151-9_9

Article  CAS  PubMed  Google Scholar 

Boon M, Wallmeier J, Ma L et al (2014) MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 5:4418. https://doi.org/10.1038/ncomms5418

Article  CAS  PubMed  Google Scholar 

Bryja V, Červenka I, Čajánek L (2017) The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Crit Rev Biochem Mol Biol 52(6):614–637. https://doi.org/10.1080/10409238.2017.1350135

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandrasekar G, Vesterlund L, Hultenby K, Tapia-Páez I, Kere J (2013) The zebrafish orthologue of the dyslexia candidate gene DYX1C1 is essential for cilia growth and function. PLoS One 8(5):e63123. https://doi.org/10.1371/journal.pone.0063123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Wu B, Xu L et al (2012a) A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo. Cell Res 22(2):333–345. https://doi.org/10.1038/cr.2011.134

Article  CAS  PubMed  Google Scholar 

Chen J, Lai F, Niswander L (2012b) The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling. Genes Dev 26(8):803–815. https://doi.org/10.1101/gad.187641.112

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen C, Xu Q, Zhang Y et al (2021) Ciliopathy protein HYLS1 coordinates the biogenesis and signaling of primary cilia by activating the ciliary lipid kinase PIPKIγ. Sci Adv. https://doi.org/10.1126/sciadv.abe3401

Article  PubMed  PubMed Central  Google Scholar 

Chih B, Liu P, Chinn Y et al (2011) A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 14(1):61–72. https://doi.org/10.1038/ncb2410

Article  CAS  PubMed  Google Scholar 

Cho KJ, Noh SH, Han SM et al (2018) ZMYND10 stabilizes intermediate chain proteins in the cytoplasmic pre-assembly of dynein arms. PLoS Genet 14(3):e1007316. https://doi.org/10.1371/journal.pgen.1007316

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cirnigliaro M, Chang TS, Arteaga SA et al (2023) The contributions of rare inherited and polygenic risk to ASD in multiplex families. Proc Natl Acad Sci U S A 120(31):e2215632120. https://doi.org/10.1073/pnas.2215632120

Article  CAS  PubMed  PubMed Central  Google Scholar 

Coletti AM, Singh D, Kumar S et al (2018) Characterization of the ventricular-subventricular stem cell niche during human brain development. Development. https://doi.org/10.1242/dev.170100

Article  PubMed  PubMed Central  Google Scholar 

Coppieters F, Lefever S, Leroy BP, De Baere E (Oct2010) CEP290, a gene with many faces: mutation overview and presentation of CEP290base. Hum Mutat 31(10):1097–1108. https://doi.org/10.1002/humu.21337

Article  CAS  PubMed 

Comments (0)

No login
gif