Higher Serum Aspartate May be Associated with Better Cognitive Function as Mediated by Reduced Aβ Accumulation in Frontal and Temporal Lobes in Mild Cognitive Impairment

Afraei S, D’Aniello A, Sedaghat R, Ekhtiari P, Azizi G, Tabrizian N et al (2017) Therapeutic effects of D-aspartate in a mouse model of multiple sclerosis. J Food Drug Anal 25(3):699–708

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amoedo ND, Punzi G, Obre E, Lacombe D, De Grassi A, Pierri CL et al (2016) AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1863(10):2394–2412

Article  CAS  PubMed  Google Scholar 

Arnold PK, Finley LWS (2023) Regulation and function of the mammalian tricarboxylic acid cycle. J Biol Chem 299(2):102838

Article  CAS  PubMed  Google Scholar 

Azargoonjahromi A. Diminution of liver aminotransferase enzymes levels in nonalcoholic fatty liver disease by silymarin: a case report. 2022.

Azargoonjahromi A (2023) Dual role of nitric oxide in Alzheimer’s disease. Nitric Oxide 134–135:23–37

Article  PubMed  Google Scholar 

Azargoonjahromi A (2024a) The duality of amyloid-β: its role in normal and Alzheimer’s disease states. Mol Brain 17(1):44

Article  CAS  PubMed  PubMed Central  Google Scholar 

Azargoonjahromi A (2024b) Immunotherapy in Alzheimer’s disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 76(9):1115–1131

Article  CAS  PubMed  Google Scholar 

Azargoonjahromi A, Abutalebian F (2024) Unraveling the therapeutic efficacy of resveratrol in Alzheimer’s disease: an umbrella review of systematic evidence. Nutr Metab 21(1):15

Article  Google Scholar 

Azargoonjahromi A, Nasiri H, for the Alzheimer’s Disease Neuroimaging I. CSF Amyloid-β42 associates with neuropsychiatric and cognitive outcomes via cerebral glucose metabolism. Molecular Brain. 2025;18(1):55.

Balázs D, Csillag A, Gerber G (2012) L-aspartate effects on single neurons and interactions with glutamate in striatal slice preparation from chicken brain. Brain Res 1474:1–7

Article  PubMed  Google Scholar 

Bastian C, Zerimech S, Nguyen H, Doherty C, Franke C, Faris A et al (2022) Aging astrocytes metabolically support aging axon function by proficiently regulating astrocyte-neuron lactate shuttle. Exp Neurol 357:114173

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borkum JM (2023) The tricarboxylic acid cycle as a central regulator of the rate of aging: implications for metabolic interventions. Adv Biol 7(7):2300095

Article  Google Scholar 

Chamaa F, Magistretti PJ, Fiumelli H (2024) Astrocyte-derived lactate in stress disorders. Neurobiol Dis 192:106417

Article  CAS  PubMed  Google Scholar 

Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL et al (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67(5):1470–1484

Article  CAS  PubMed  Google Scholar 

Choudhary AK, Lee YY (2018) Neurophysiological symptoms and aspartame: what is the connection? Nutr Neurosci 21(5):306–316

Article  CAS  PubMed  Google Scholar 

Cotman C, Iversen L, Elsevier Current Trends (1987) Excitatory amino acids in the brain-focus on NMDA receptors. Trends Neurosci. https://doi.org/10.1016/0166-2236(87)90170-6

Article  Google Scholar 

Danysz W, Parsons CG (2012) Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine–searching for the connections. Br J Pharmacol 167(2):324–352

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dar W (2024a) Aspartame-induced cognitive dysfunction: unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 135:112295

Article  CAS  PubMed  Google Scholar 

Dar W (2024b) Aspartame-induced cognitive dysfunction: unveiling role of microglia-mediated neuroinflammation and molecular remediation. Int Immunopharmacol 135:112295

Article  CAS  PubMed  Google Scholar 

de Rosa V, Secondo A, Pannaccione A, Ciccone R, Formisano L, Guida N et al (2019) D-aspartate treatment attenuates myelin damage and stimulates myelin repair. EMBO Mol Med 11(1):e9278

Article  PubMed  Google Scholar 

Dumont M, Beal MF (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic Biol Med 51(5):1014–1026

Article  CAS  PubMed  Google Scholar 

Dupuis JP, Nicole O, Groc L (2023) NMDA receptor functions in health and disease: old actor, new dimensions. Neuron 111(15):2312–2328

Article  CAS  PubMed  Google Scholar 

Errico F, Nisticò R, Di Giorgio A, Squillace M, Vitucci D, Galbusera A et al (2014) Free d-aspartate regulates neuronal dendritic morphology, synaptic plasticity, gray matter volume and brain activity in mammals. Transl Psychiatry 4(7):e417–e

Article  Google Scholar 

Felice F, De Falco P, Milani M, Castelli S, Ragnini-Wilson A, Lazzarino G et al (2024) N-acetylaspartate mitigates pro-inflammatory responses in microglial cells by intersecting lipid metabolism and acetylation processes. Cell Commun Signal 22(1):564

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen GE, Gibson GE (2022) The α-ketoglutarate dehydrogenase complex as a hub of plasticity in neurodegeneration and regeneration. Int J Mol Sci. https://doi.org/10.3390/ijms232012403

Article  PubMed  PubMed Central  Google Scholar 

Hart ML, Quon E, Vigil ABG, Engstrom IA, Newsom OJ, Davidsen K et al (2023) Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. Elife. https://doi.org/10.7554/eLife.78654

Article  PubMed  PubMed Central  Google Scholar 

Janus A, Lustyk K, Pytka K (2023) MK-801 and cognitive functions: investigating the behavioral effects of a non-competitive NMDA receptor antagonist. Psychopharmacology 240(12):2435–2457

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG (2023) Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 13(1):14326

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim S-H, Leem JY, Lah JJ, Slunt HH, Levey AI, Thinakaran G et al (2001) Multiple effects of aspartate mutant presenilin 1 on the processing and trafficking of amyloid precursor protein*. J Biol Chem 276(46):43343–43350

Article  CAS  PubMed  Google Scholar 

Kimberly WT, Xia W, Rahmati T, Wolfe MS, Selkoe DJ (2000) The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation*. J Biol Chem 275(5):3173–3178

Article  CAS  PubMed  Google Scholar 

Kirkland A, Holton K. Intake of aspartate is negatively associated with overall cognitive functioning in college students (P14–015–19). Current Developments in Nutrition. 2019;3:nzz052. P14–15–19.

Kubrusly RC, de Mello MC, de Mello FG (1998) Aspartate as a selective NMDA receptor agonist in cultured cells from the avian retina. Neurochem Int 32(1):47–52

Article  CAS  PubMed  Google Scholar 

Li W, Yue L, Sun L, Xiao S (2022) An increased aspartate to alanine aminotransferase ratio is associated with a higher risk of cognitive impairment. Front Med Lausanne. https://doi.org/10.3389/fmed.2022.780174

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Chang L, Song Y, Li H, Wu Y (2019a) The role of NMDA receptors in Alzheimer’s disease. Front Neurosci. https://doi.org/10.3389/fnins.2019.00043

Article  PubMed  PubMed Central 

Comments (0)

No login
gif