Mansier O, Luque Paz D, Ianotto JC et al (2018) Clinical and biological characterization of MPN patients harboring two driver mutations, a French intergroup of myeloproliferative neoplasms (FIM) study. Am J Hematol 93:E84–E86. https://doi.org/10.1002/ajh.25014
Luque Paz D, Kralovics R, Skoda RC (2023) Genetic basis and molecular profiling in myeloproliferative neoplasms. Blood 141:1909–1921. https://doi.org/10.1182/blood.2022017578
Article CAS PubMed Google Scholar
Zhou FP, Wang CC, Du HP et al (2020) Primary myelofibrosis with concurrent CALR and MPL mutations: a case report. World J Clin Cases 8:5618–5624. https://doi.org/10.12998/wjcc.v8.i22.5618
Article PubMed PubMed Central Google Scholar
Kelkar K, Ramanan V, Anand S, Ranade S, Patil K, Agarwal M, Phadke N (2019) Co-occurrence of CALR and MPL somatic mutations in an Indian patient with a Philadelphia-negative myeloproliferative neoplasm. J Hematopathol 12(163):168
Li MM, Datto M, Duncavage EJ et al (2017) Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn 19:4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002
Article CAS PubMed PubMed Central Google Scholar
Schulze S, Stengel R, Jaekel N et al (2019) Concomitant and noncanonical JAK2 and MPL mutations in JAK2V617F- and MPLW515 L-positive myelofibrosis. Genes Chromosomes Cancer 58:747–755. https://doi.org/10.1002/gcc.22781
Article CAS PubMed Google Scholar
Tefferi A (2021) Primary myelofibrosis: 2021 update on diagnosis, risk-stratification and management. Am J Hematol 96:145–162. https://doi.org/10.1002/ajh.26050
Article CAS PubMed Google Scholar
Lasho TL, Mudireddy M, Finke CM et al (2018) Targeted next-generation sequencing in blast phase myeloproliferative neoplasms. Blood Adv 2:370–380. https://doi.org/10.1182/bloodadvances.2018015875
Article CAS PubMed PubMed Central Google Scholar
Tefferi A, Mudireddy M, Mannelli F et al (2018) Blast phase myeloproliferative neoplasm: Mayo-AGIMM study of 410 patients from two separate cohorts. Leukemia 32:1200–1210. https://doi.org/10.1038/s41375-018-0019-y
Article PubMed PubMed Central Google Scholar
Tefferi A (2010) Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia 24:1128–1138. https://doi.org/10.1038/leu.2010.69
Article CAS PubMed PubMed Central Google Scholar
Shams SF, Ayatollahi H, Sadeghian MH et al (2018) Prevalence of MPL (W515K/L) mutations in patients with negative-JAK2 (V617F) myeloproliferative neoplasm in North-East of Iran. Iran J Pathol 13:397–402
PubMed PubMed Central Google Scholar
Langabeer SE, Andrikovics H, Asp J et al (2015) Molecular diagnostics of myeloproliferative neoplasms. Eur J Haematol 95:270–279. https://doi.org/10.1111/ejh.12578
Article CAS PubMed Google Scholar
Constantinescu SN, Vainchenker W, Levy G et al (2021) Functional consequences of mutations in myeloproliferative neoplasms. Hemasphere 5:e578. https://doi.org/10.1097/HS9.0000000000000578
Article CAS PubMed PubMed Central Google Scholar
Greenfield G, McMullin MF, Mills K (2021) Molecular pathogenesis of the myeloproliferative neoplasms. J Hematol Oncol 14:103. https://doi.org/10.1186/s13045-021-01116-z
Article CAS PubMed PubMed Central Google Scholar
Wu QY, Ma MM, Zhang S et al (2019) Disruption of R867 and Y613 interaction plays key roles in JAK2 R867Q mutation caused acute leukemia. Int J Biol Macromol 136:209–219. https://doi.org/10.1016/j.ijbiomac.2019.06.068
Article CAS PubMed Google Scholar
Mullighan CG, Zhang J, Harvey RC et al (2009) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 106:9414–9418. https://doi.org/10.1073/pnas.0811761106
Article PubMed PubMed Central Google Scholar
Tawana K, Wang J, Kiraly PA et al (2017) Recurrent somatic JAK-STAT pathway variants within a RUNX1-mutated pedigree. Eur J Hum Genet 25:1020–1024. https://doi.org/10.1038/ejhg.2017.80
Article CAS PubMed PubMed Central Google Scholar
Pandey G, Kuykendall AT, GW (2022) JAK2 inhibitor persistence in MPN: uncovering a central role of ERK activation. Blood Cancer J 12:13. https://doi.org/10.1038/s41408-022-00609-5
Rodriguez Moncivais OJ, Chavez SA, Estrada Jimenez VH et al (2023) Structural analysis of Janus tyrosine kinase variants in hematological malignancies: implications for drug development and opportunities for novel therapeutic strategies. Int J Mol Sci 24(19):14573. https://doi.org/10.3390/ijms241914573
Article CAS PubMed PubMed Central Google Scholar
Langabeer SE (2014) JAK2 mutations to the fore in hereditary thrombocythemia. JAKSTAT 3:e957618. https://doi.org/10.4161/21623988.2014.957618
Article PubMed PubMed Central Google Scholar
Marty C, Saint-Martin C, Pecquet C et al (2014) Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors. Blood 123:1372–1383. https://doi.org/10.1182/blood-2013-05-504555
Article CAS PubMed Google Scholar
Plo I, Bellanne-Chantelot C, Mosca M et al (2017) Genetic alterations of the thrombopoietin/MPL/JAK2 axis impacting megakaryopoiesis. Front Endocrinol (Lausanne) 8:234. https://doi.org/10.3389/fendo.2017.00234
Bercovich D, Ganmore I, Scott LM et al (2008) Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet 372:1484–1492. https://doi.org/10.1016/S0140-6736(08)61341-0
Article CAS PubMed Google Scholar
Xu RZ, Karsan A, Xu Z et al (2022) A rare de novo pure erythroid leukemia with JAK2 R683S mutation. Ann Hematol 101:921–922. https://doi.org/10.1007/s00277-021-04657-y
Article CAS PubMed Google Scholar
Krah NM, Miotke L, Li P et al (2023) JAK2 R683S mutation resulting in dual diagnoses of chronic eosinophilic leukemia and myelodysplastic/myeloproliferative overlap syndrome. J Natl Compr Canc Netw 21:1218–1223. https://doi.org/10.6004/jnccn.2023.7068
Wu QY, Guo HY, Li F et al (2013) Disruption of E627 and R683 interaction is responsible for B-cell acute lymphoblastic leukemia caused by JAK2 R683G(S) mutations. Leuk Lymphoma 54:2693–2700. https://doi.org/10.3109/10428194.2013.781171
Article CAS PubMed Google Scholar
Li F, Guo HY, Wang M et al (2013) The effects of R683S (G) genetic mutations on the JAK2 activity, structure and stability. Int J Biol Macromol 60:186–195. https://doi.org/10.1016/j.ijbiomac.2013.05.029
Article CAS PubMed Google Scholar
Silvennoinen O, Hubbard SR (2015) Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 125:3388–3392. https://doi.org/10.1182/blood-2015-01-621110
Article CAS PubMed PubMed Central Google Scholar
Rumi E, Trotti C, Vanni D et al (2020) The genetic basis of primary myelofibrosis and its clinical relevance. Int J Mol Sci 21:8885. https://doi.org/10.3390/ijms21238885
Comments (0)