Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PKH, et al. Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology. 2023;164:766–82.
Reveron-Thornton RF, Teng MLP, Lee EY, Tran A, Vajanaphanich S, Tan EX, et al. Global and regional long-term survival following resection for HCC in the recent decade: a meta-analysis of 110 studies. Hepatol Commun. 2022;6:1813–26.
Article PubMed PubMed Central Google Scholar
Philips CA, Rajesh S, Nair DC, Ahamed R, Abduljaleel JK, Augustine P. Hepatocellular carcinoma in 2021: an exhaustive update. Cureus. 2021;13: e19274.
PubMed PubMed Central Google Scholar
McGlynn KA, Petrick JL, El-Serag HB. Epidemiology of hepatocellular carcinoma. Hepatology. 2020. https://doi.org/10.1002/hep.31288.
Chernyak V. Current status of the liver imaging reporting and data system in hepatocellular carcinoma. Gastroenterol Hepatol. 2024;20(3):172–5.
Patel N, Yopp AC, Singal AG. Diagnostic delays are common among patients with hepatocellular carcinoma. J Natl Compr Canc Netw. 2015;13:543–9.
Article PubMed PubMed Central Google Scholar
Vogel A, Cervantes A, Chau I, Daniele B, Llovet JM, Meyer T, et al. Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2018;29:238–55.
Hong TP, Gow PJ, Fink M, Dev A, Roberts SK, Nicoll A, et al. Surveillance improves survival of patients with hepatocellular carcinoma: a prospective population-based study. Med J Aust. 2018;209:348–54.
Arnold N, Gough K, Patsalou A, Carrigan B, MacAskill W. Does on-site computed tomography matter? A cross-sectional study of stroke patients’ door-to-scan-time in rural hospitals. Aust J Rural Health. 2024;32:834–9.
Tadavarthi Y, Makeeva V, Wagstaff W, Zhan H, Podlasek A, Bhatia N, et al. Overview of noninterpretive AI models for safety, quality, workflow, and education applications in radiology practice. Radiol: Artif Intell. 2022;4:10114.
Soffer S, Ben-Cohen A, Shimon O, Amitai MM, Greenspan H, Klang E. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology. 2019;290(3):590–606. https://doi.org/10.1148/radiol.2018180547.
Azer SA. Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: a systematic review. World J Gastrointest Oncol. 2019;11:1218–30.
Article PubMed PubMed Central Google Scholar
Jeganathan S. The growing problem of radiologist shortages: Australia and New Zealand’s perspective. Korean J Radiol. 2023;24:1043–1043.
Article PubMed PubMed Central Google Scholar
Norlisah R, Mohd R. The growing problem of radiologist shortage: Malaysia’s perspective. Korean J Radiol. 2023;24:936–936.
Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: improving diagnostics, prognostics and response prediction. JHEP Rep. 2022;4: 100443.
Article PubMed PubMed Central Google Scholar
Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Ben Van Calster, et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ; 2024:e078378–e078378
Moons KGM, Wolff RF, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170: W1.
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372.
Cheng C, Cai J, Teng W, Zheng Y, Huang Y, Wang Y, et al. A flexible three-dimensional heterophase computed tomography hepatocellular carcinoma detection algorithm for generalizable and practical screening. Hepatol Commun. 2022;6:2901–13.
Article PubMed PubMed Central CAS Google Scholar
Ling Y, Ying S, Xu L, Peng Z, Mao X, Chen Z, et al. Automatic volumetric diagnosis of hepatocellular carcinoma based on four-phase CT scans with minimum extra information. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.960178.
Article PubMed PubMed Central Google Scholar
Nakai H, Fujimoto K, Yamashita R, Sato T, Someya Y, Taura K, et al. Convolutional neural network for classifying primary liver cancer based on triple-phase CT and tumor marker information: a pilot study. Jpn J Radiol. 2021. https://doi.org/10.1007/s11604-021-01106-8.
Wang M, Fu F, Zheng B, Bai Y, Wu Q, Wu J, et al. Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data. Br J Cancer. 2021;125:1111–21.
Article PubMed PubMed Central CAS Google Scholar
Xin H, Zhang Y, Lai Q, Liao N, Zhang J, Liu Y, et al. Automatic origin prediction of liver metastases via hierarchical artificial-intelligence system trained on multiphasic CT data: a retrospective, multicentre study. EClinicalMedicine. 2024;69:102464–102464.
Article PubMed PubMed Central Google Scholar
Ying H, Liu X, Zhang M, Ren Y, Zhen S, Wang X, et al. A multicenter clinical AI system study for detection and diagnosis of focal liver lesions. Nat Commun. 2024. https://doi.org/10.1038/s41467-024-45325-9.
Article PubMed PubMed Central Google Scholar
Zhou J, Wang W, Lei B, Ge W, Huang Y, Zhang L, et al. Automatic detection and classification of focal liver lesions based on deep convolutional neural networks: a preliminary study. Front Oncol. 2021. https://doi.org/10.3389/fonc.2020.581210.
Article PubMed PubMed Central Google Scholar
Patel KM, Zhang J, Marsden J, Bays C, Mauldin PD, Schreiner AD. Missed and delayed diagnoses of chronic liver disease in primary care patients with cirrhosis. Dig Dis Sci. 2024;69:3721–8.
Article PubMed CAS Google Scholar
Van Wettere M, Purcell Y, Bruno O, Payancé A, Plessier A, Rautou P-E, et al. Low specificity of washout to diagnose hepatocellular carcinoma in nodules showing arterial hyperenhancement in patients with Budd-Chiari syndrome. J Hepatol. 2019;70(6):1123–32.
Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated triaging of adult chest radiographs with deep artificial neural networks. Radiology. 2019;291(1):196–202.
Topff L, Ranschaert ER, Bartels-Rutten A, Negoita A, Menezes R, Beets-Tan RGH, et al. Artificial intelligence tool for detection and worklist prioritization reduces time to diagnosis of incidental pulmonary embolism at CT. Radiol: Cardiothoracic Imaging. 2023;5(2): e220163.
PubMed PubMed Central Google Scholar
Baltruschat I, Steinmeister L, Nickisch H, Saalbach A, Grass M, Adam G, et al. Smart chest X-ray worklist prioritization using artificial intelligence: a clinical workflow simulation. Eur Radiol. 2021;31(6):3837–45.
Park HJ, Kim SY. Imaging modalities for hepatocellular carcinoma surveillance: expanding horizons beyond ultrasound. J Liver Cancer. 2020;20(2):99–105.
Article PubMed PubMed Central Google Scholar
de Koning HJ, van der Aalst CM, de Jong PA, Scholten ET, Nackaerts K, Heuvelmans MA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503–13.
Nasrullah N, Sang J, Alam MS, Mateen M, Cai B, Hu H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors (Basel). 2019. https://doi.org/10.3390/s19173722.
Kim DH, Choi SH, Shim JH, Kim SY, Lee SS, Byun JH, et al. Magnetic resonance imaging for surveillance of hepatocellular carcinoma: a systematic review and meta-analysis. Diagnostics. 2021. https://doi.org/10.3390/diagnostics11091665.
Comments (0)