Integrated evaluation of Nigrosome 1 sign, neuromelanin-sensitive MR and iron deposition

Ma SY, Roytta M, Rinne JO, Collan Y, Rinne UK. Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s disease using disector counts. J Neurol Sci. 1997;151:83–7.

Article  PubMed  CAS  Google Scholar 

Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, et al. Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain. 2013;136:2419–31.

Article  PubMed  PubMed Central  Google Scholar 

de la Fuente-Fernandez R, Schulzer M, Kuramoto L, Cragg J, Ramachandiran N, Au WL, et al. Age-specific progression of nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol. 2011;69:803–10.

Article  PubMed  Google Scholar 

Fearnley JM, Lees AJ. Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain. 1991;114(Pt 5):2283–301.

Article  PubMed  Google Scholar 

Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. part II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122(Pt 8):1437–48.

Article  PubMed  Google Scholar 

Schwarz ST, Afzal M, Morgan PS, Bajaj N, Gowland PA, Auer DP. The “swallow tail” appearance of the healthy nigrosome: a new accurate test of Parkinson’s disease: a case-control and retrospective cross-sectional MRI study at 3T. PLoS ONE. 2014;9: e93814.

Article  PubMed  PubMed Central  Google Scholar 

Brammerloh M, Kirilina E, Alkemade A, Bazin PL, Jantzen C, Jager C, et al. Swallow tail sign: revisited. Radiology. 2022;305:674–7.

Article  PubMed  Google Scholar 

Blazejewska AI, Schwarz ST, Pitiot A, Stephenson MC, Lowe J, Bajaj N, et al. Visualization of nigrosome 1 and its loss in PD: pathoanatomical correlation and in vivo 7 T MRI. Neurology. 2013;81:534–40.

Article  PubMed  PubMed Central  Google Scholar 

Brammerloh M, Morawski M, Friedrich I, Reinert T, Lange C, Pelicon P, et al. Measuring the iron content of dopaminergic neurons in substantia nigra with MRI relaxometry. Neuroimage. 2021;239: 118255.

Article  PubMed  CAS  Google Scholar 

Cheng Z, He N, Huang P, Li Y, Tang R, Sethi SK, et al. Imaging the Nigrosome 1 in the substantia nigra using susceptibility weighted imaging and quantitative susceptibility mapping: an application to Parkinson’s disease. NeuroImage Clin. 2020;25: 102103.

Article  PubMed  Google Scholar 

Sasaki M, Shibata E, Tohyama K, Takahashi J, Otsuka K, Tsuchiya K, et al. Neuromelanin magnetic resonance imaging of locus ceruleus and substantia nigra in Parkinson’s disease. NeuroReport. 2006;17:1215–8.

Article  PubMed  Google Scholar 

Nakane T, Nihashi T, Kawai H, Naganawa S. Visualization of neuromelanin in the Substantia nigra and locus ceruleus at 1.5T using a 3D-gradient echo sequence with magnetization transfer contrast. Magn Reson Med Sci. 2008;7:205–10.

Article  PubMed  Google Scholar 

Ogisu K, Kudo K, Sasaki M, Sakushima K, Yabe I, Sasaki H, et al. 3D neuromelanin-sensitive magnetic resonance imaging with semi-automated volume measurement of the substantia nigra pars compacta for diagnosis of Parkinson’s disease. Neuroradiology. 2013;55:719–24.

Article  PubMed  Google Scholar 

Oshima S, Fushimi Y, Okada T, Nakajima S, Yokota Y, Shima A, et al. Neuromelanin-sensitive magnetic resonance imaging using DANTE pulse. Mov Disord. 2021;36:874–82.

Article  PubMed  CAS  Google Scholar 

Oshima S, Fushimi Y, Miyake KK, Nakajima S, Sakata A, Okuchi S, et al. Denoising approach with deep learning-based reconstruction for neuromelanin-sensitive MRI: image quality and diagnostic performance. Jpn J Radiol. 2023;41:1216–25.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu Y, Li J, He N, Chen Y, Jin Z, Yan F, et al. Optimizing neuromelanin contrast in the substantia nigra and locus coeruleus using a magnetization transfer contrast prepared 3D gradient recalled echo sequence. Neuroimage. 2020;218: 116935.

Article  PubMed  CAS  Google Scholar 

Schwarz ST, Xing Y, Tomar P, Bajaj N, Auer DP. In vivo assessment of brainstem depigmentation in Parkinson disease: potential as a severity marker for multicenter studies. Radiology. 2017;283:789–98.

Article  PubMed  Google Scholar 

Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT, et al. Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med. 2017;78:1790–800.

Article  PubMed  CAS  Google Scholar 

Langley J, Huddleston DE, Chen X, Sedlacik J, Zachariah N, Hu X. A multicontrast approach for comprehensive imaging of substantia nigra. Neuroimage. 2015;112:7–13.

Article  PubMed  Google Scholar 

Wengler K, He X, Abi-Dargham A, Horga G. Reproducibility assessment of neuromelanin-sensitive magnetic resonance imaging protocols for region-of-interest and voxelwise analyses. Neuroimage. 2020;208: 116457.

Article  PubMed  CAS  Google Scholar 

Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain. 2024;147:337–51.

Article  PubMed  Google Scholar 

Watanabe T. Neuromelanin? MRI of catecholaminergic neurons. Brain. 2024;147:e24–6.

Article  PubMed  Google Scholar 

Cassidy CM, Zucca FA, Girgis RR, Baker SC, Weinstein JJ, Sharp ME, et al. Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proc Natl Acad Sci U S A. 2019;116:5108–17.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang J, Huang Z, Li Y, Ye F, Wang C, Zhang Y, et al. Neuromelanin-sensitive MRI of the substantia nigra: an imaging biomarker to differentiate essential tremor from tremor-dominant Parkinson’s disease. Parkinsonism Relat Disord. 2019;58:3–8.

Article  PubMed  Google Scholar 

Harder SL, Hopp KM, Ward H, Neglio H, Gitlin J, Kido D. Mineralization of the deep gray matter with age: a retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol. 2008;29:176–83.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Liu M, Liu S, Ghassaban K, Zheng W, Dicicco D, Miao Y, et al. Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping. J Magn Reson Imaging. 2016;44:59–71.

Article  PubMed  CAS  Google Scholar 

Li Y, Sethi SK, Zhang C, Miao Y, Yerramsetty KK, Palutla VK, et al. Iron Content in deep gray matter as a function of age using quantitative susceptibility mapping: a multicenter study. Front Neurosci. 2020;14: 607705.

Article  PubMed  Google Scholar 

Ghassaban K, He N, Sethi SK, Huang P, Chen S, Yan F, et al. Regional high iron in the Substantia nigra differentiates Parkinson’s disease patients from healthy controls. Front Aging Neurosci. 2019;11:106.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hartono S, Chen RC, Welton T, Tan AS, Lee W, Teh PY, et al. Quantitative iron-neuromelanin MRI associates with motor severity in Parkinson’s disease and matches radiological disease classification. Front Aging Neurosci. 2023;15:1287917.

Article  PubMed  PubMed Central  CAS  Google Scholar 

He N, Ghassaban K, Huang P, Jokar M, Wang Y, Cheng Z, et al. Imaging iron and neuromelanin simultaneously using a single 3D gradient echo magnetization transfer sequence: combining neuromelanin, iron and the nigrosome-1 sign as complementary imaging biomarkers in early stage Parkinson’s disease. Neuroimage. 2021;230: 117810.

Article  PubMed  CAS  Google Scholar 

Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

Article  PubMed  Google Scholar 

Haacke EM, Chen Y, Utriainen D, Wu B,

Comments (0)

No login
gif