Comparison of DLIR and ASIR-V algorithms for virtual monoenergetic imaging in carotid CTA under a triple-low protocol

Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): global stroke fact sheet 2022. Int J Stroke. 2022;17(1):18–29.

Article  PubMed  Google Scholar 

Zhao Y, Hua X, Ren X, et al. Increasing burden of stroke in China: a systematic review and meta-analysis of prevalence, incidence, mortality, and case fatality. Int J Stroke. 2023;18(3):259–67.

Article  PubMed  CAS  Google Scholar 

Magge R, Lau BC, Soares BP, et al. Clinical risk factors and CT imaging features of carotid atherosclerotic plaques as predictors of new incident carotid ischemic stroke: a retrospective cohort study. AJNR Am J Neuroradiol. 2013;34(2):402–9.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nardi V, Benson C, Bois MC, et al. Carotid plaques from symptomatic patients with mild stenosis is associated with intraplaque hemorrhage. Hypertension. 2022;79(1):271–82.

Article  PubMed  CAS  Google Scholar 

Baradaran H, Gupta A. Carotid vessel wall imaging on CTA. AJNR Am J Neuroradiol. 2020;41(3):380–6.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li W, Huang W, Li P, et al. Application of deep learning image reconstruction-high algorithm in one-stop coronary and carotid-cerebrovascular CT angiography with low radiation and contrast doses. Quant Imaging Med Surg. 2024;14(2):1860–72.

Article  PubMed  PubMed Central  Google Scholar 

Zhang Q, Lin Y, Zhang H, Ding J, Pan J, Zhang S. The application value of a vendor-specific deep learning image reconstruction algorithm in “triple low” head and neck computed tomography angiography. Quant Imaging Med Surg. 2024;14(4):2955–67.

Article  PubMed  PubMed Central  Google Scholar 

Albrecht MH, Vogl TJ, Martin SS, et al. Review of clinical applications for virtual monoenergetic dual-energy CT. Radiology. 2019;293(2):260–71.

Article  PubMed  Google Scholar 

Wang Y, Wang Y, Hu P, Niu Z, Hu H. Comparative study of the image quality of twin beam dual energy and single energy carotid CT angiography. Eur J Radiol. 2022;148:110160.

Article  PubMed  Google Scholar 

Sun J, Li H, Li J, et al. Improving the image quality of pediatric chest CT angiography with low radiation dose and contrast volume using deep learning image reconstruction. Quant Imaging Med Surg. 2021;11(7):3051–8.

Article  PubMed  PubMed Central  Google Scholar 

Jiang C, Jin D, Liu Z, Zhang Y, Ni M, Yuan H. Deep learning image reconstruction algorithm for carotid dual-energy computed tomography angiography: evaluation of image quality and diagnostic performance. Insights Imaging. 2022;13(1):182.

Article  PubMed  PubMed Central  Google Scholar 

Zhang M, Gu S, Shi Y. The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. Complex Intell Syst. 2022;8:5545–61.

Article  Google Scholar 

Ichikawa Y, Kanii Y, Yamazaki A, et al. Deep learning image reconstruction for improvement of image quality of abdominal computed tomography: comparison with hybrid iterative reconstruction. Jpn J Radiol. 2021;39(6):598–604.

Article  PubMed  Google Scholar 

Park C, Choo KS, Jung Y, Jeong HS, Hwang JY, Yun MS. CT iterative vs deep learning reconstruction: comparison of noise and sharpness. Eur Radiol. 2021;31(5):3156–64.

Article  PubMed  Google Scholar 

Xu JJ, Lönn L, Budtz-Jørgensen E, Hansen KL, Ulriksen PS. Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT. Eur radiol. 2022;32(10):7098–107.

PubMed  CAS  Google Scholar 

Noda Y, Nakamura F, Kawamura T, et al. Deep-learning image-reconstruction algorithm for dual-energy CT angiography with reduced iodine dose: preliminary results. Clin Radiol. 2022;77(2):e138–46.

Article  PubMed  CAS  Google Scholar 

de Basea B, Gomez M, Thierry-Chef I, Harbron R, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat Med. 2023;29(12):3111–9.

Article  Google Scholar 

Hauptmann M, Byrnes G, Cardis E, et al. Brain cancer after radiation exposure from CT examinations of children and young adults: results from the EPI-CT cohort study. Lancet Oncol. 2023;24(1):45–53.

Article  PubMed  Google Scholar 

Huang X, Zhao W, Wang G, et al. Improving image quality with deep learning image reconstruction in double-low-dose head CT angiography compared with standard dose and adaptive statistical iterative reconstruction. Br J Radiol. 2023;96(1143):20220625.

Article  PubMed  PubMed Central  Google Scholar 

Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55.

Article  PubMed  CAS  Google Scholar 

Weisbord SD, Palevsky PM, Kaufman JS, et al. Contrast-associated acute kidney injury and serious adverse outcomes following angiography. J Am Coll Cardiol. 2020;75(11):1311–20.

Article  PubMed  Google Scholar 

Caruso D, De Santis D, Tremamunno G, et al. Deep learning reconstruction algorithm and high-concentration contrast medium: feasibility of a double-low protocol in coronary computed tomography angiography. Eur Radiol. 2024;35:2213–21.

Article  PubMed  PubMed Central  Google Scholar 

De Santis D, Polidori T, Tremamunno G, et al. Deep learning image reconstruction algorithm: impact on image quality in coronary computed tomography angiography. Radiol Med. 2023;128(4):434–44.

Article  PubMed  PubMed Central  Google Scholar 

Wang H, Li X, Wang T, et al. The value of using a deep learning image reconstruction algorithm of thinner slice thickness to balance the image noise and spatial resolution in low-dose abdominal CT. Quant Imaging Med Surg. 2023;13(3):1814–24.

Article  PubMed  Google Scholar 

Zhong J, Wang L, Shen H, et al. Improving lesion conspicuity in abdominal dual-energy CT with deep learning image reconstruction: a prospective study with five readers. Eur Radiol. 2023;33(8):5331–43.

Article  PubMed  Google Scholar 

Comments (0)

No login
gif