de Toledo RB, de Faria OAC, Leme LO, Magnabosco CU, Guimarães R Jr, Eifert EDC, Dos Santos IR, Oliveira RV, Dode MAN, Malaquias JV, Pivato I, Martins CF. Effect of food supplementation on in vitro embryo production and growth performance in prepubertal Nelore heifers. Anim Biotechnol. 2023;34:5087–96.
Crowe AD, Lonergan P, Butler ST. Invited review: use of assisted reproduction techniques to accelerate genetic gain and increase value of beef production in dairy herds. J Dairy Sci. 2021;104:12189–206.
Article CAS PubMed Google Scholar
Mueller ML, Van Eenennaam AL. Synergistic power of genomic selection, assisted reproductive technologies, and gene editing to drive genetic improvement of cattle. CABI Agric Biosci. 2022;3:13. https://doi.org/10.1186/s43170-022-00080-z.
Mikkola M, Desmet KLJ, Kommisrud E, Riegler MA. Recent advancements to increase success in assisted reproductive technologies in cattle. Anim Reprod. 2024;21(3): e20240031. https://doi.org/10.1590/1984-3143-AR2024-0031.
Article PubMed PubMed Central Google Scholar
Perkel KJ, Tscherner A, Merrill C, Lamarre J, Madan P. The ART of selecting the best embryo: a review of early embryonic mortality and bovine embryo viability assessment methods. Mol Reprod Dev. 2015;82(11):822–38. https://doi.org/10.1002/mrd.22525.
Article CAS PubMed Google Scholar
Engdawork A, Belayhun T, Aseged T. The role of reproductive technologies and cryopreservation of genetic materials in the conservation of animal genetic resources. Ec Genet Genomic. 2024;31: 100250.
Falchi L, Ledda S, Zedda MT. Embryo biotechnologies in sheep: achievements and new improvements. Reprod Domest Anim. 2022;57(Suppl 5):22–33. https://doi.org/10.1111/rda.14127.
Article CAS PubMed PubMed Central Google Scholar
Lonergan P, Fair T. The ART of studying early embryo development: progress and challenges in ruminant embryo culture. Theriogenology. 2014;81(1):49–55. https://doi.org/10.1016/j.theriogenology.2013.09.021.
Ermisch AF, Herrick JR, Pasquariello R, Dyer MC, Lyons SM, Broeckling CD, Rajput SK, Schoolcraft WB, Krisher RL. A novel culture medium with reduced nutrient concentrations supports the development and viability of mouse embryos. Sci Rep. 2020;10:9263.
Article CAS PubMed PubMed Central Google Scholar
Tsopp E, Kilk K, Taalberg E, Pärn P, Viljaste-Seera A, Kavak A, Jaakma Ü. Associations of the single bovine embryo growth media metabolome with successful pregnancy. Metabolites. 2024;14(2): 89. https://doi.org/10.3390/metabo14020089.
Article CAS PubMed PubMed Central Google Scholar
Choi YH, Lee BC, Lim JM, Kang SK, Hwang WS. Optimization of culture medium for cloned bovine embryos and its influence on pregnancy and delivery outcome. Theriogenology. 2002;58:1187–97.
Article CAS PubMed Google Scholar
Wasielak M, Bogacki M. Apoptosis inhibition by insulin-like growth factor (IGF)-I during in vitro maturation of bovine oocytes. J Reprod Dev. 2007;53(2):419–26. https://doi.org/10.1262/jrd.18076.
Munther AA, Mohammed TR, Majeed AF. Effect of culture medium on in vitro fertilization in local Iraqi ewes. Arch Razi Inst. 2022;77(5):1561–7. https://doi.org/10.22092/ARI.2022.357978.2124.
Article CAS PubMed PubMed Central Google Scholar
Ferré LB, Kjelland ME, Strøbech LB, Hyttel P, Mermillod P, Ross PJ. Review: recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal. 2020;14:991–1004.
Krisher RL, Herrick JR. Bovine embryo production in vitro: evolution of culture media and commercial perspectives. Anim Reprod. 2024;21: e20240051.
Article PubMed PubMed Central Google Scholar
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula A, Mahmoud AM, Zaabel SM. Importance of antioxidant supplementation during in vitro maturation of mammalian oocytes. Vet Sci. 2022;9(8): 439. https://doi.org/10.3390/vetsci9080439.
Article PubMed PubMed Central Google Scholar
Deng J, Zhao Q, Cinnioglu C, Kayali R, Lathi RB, Behr B. The impact of culture conditions on blastocyst formation and aneuploidy rates: a comparison between single-step and sequential media in a large academic practice. J Assist Reprod Genet. 2020;37(1):161–9. https://doi.org/10.1007/s10815-019-01621-8.
Article PubMed PubMed Central Google Scholar
Pranomphon T, López-Valiñas Á, Almiñana C, Mahé C, Brair VL, Parnpai R, Mermillod P, Bauersachs S, Saint-Dizier M. Oviduct epithelial spheroids during in vitro culture of bovine embryos mitigate oxidative stress, improve blastocyst quality and change the embryonic transcriptome. Biol Res. 2024;57(1):73. https://doi.org/10.1186/s40659-024-00555-5.
Article CAS PubMed PubMed Central Google Scholar
Amaral TF, de Grazia JGV, Martinhao LAG, De Col F, Siqueira LGB, Viana JHM, Hansen PJ. Actions of CSF2 and DKK1 on bovine embryo development and pregnancy outcomes are affected by composition of embryo culture medium. Sci Rep. 2022;12:7503.
Article CAS PubMed PubMed Central Google Scholar
Shree N, Anjum M, Reddy GL. Medias used in in vitro embryo production (IVEP): a review. Int J Sci Res. 2023;3(6):1208–2011. https://doi.org/10.5281/zenodo.8096934.
de Araujo CH, Nogueira D, de Araujo MC, Martins WP, Ferriani RA, dos Reis RM. Supplemented tissue culture medium 199 is a better medium for in vitro maturation of oocytes from women with polycystic ovary syndrome than human tubal fluid. Fertil Steril. 2009;91(2):509–13. https://doi.org/10.1016/j.fertnstert.2007.11.082.
Parrish JJ. Bovine in vitro fertilization: in vitro oocyte maturation and sperm capacitation with heparin. Theriogenology. 2014;81(1):67–73. https://doi.org/10.1016/j.theriogenology.2013.08.005.
Men H. Evolution of media supporting the development of mammalian preimplantation embryos in vitro. Biology (Basel). 2024;13(10): 789. https://doi.org/10.3390/biology13100789.
Article CAS PubMed Google Scholar
Saint-Dizier M, Schoen J, Chen S, Banliat C, Mermillod P. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions. Int J Mol Sci. 2019;21(1): 223. https://doi.org/10.3390/ijms21010223.
Article CAS PubMed PubMed Central Google Scholar
Lopera-Vasquez R, Hamdi M, Maillo V, Lloreda V, Coy P, Gutierrez-Adan A, Bermejo-Alvarez P, Rizos D. Effect of bovine oviductal fluid on development and quality of bovine embryos produced in vitro. Reprod Fertil Dev. 2017;29(3):621–9. https://doi.org/10.1071/RD15238.
Article CAS PubMed Google Scholar
Souza-Fabjan JMG, Leal GR, Monteiro CAS, Batista RITP, Barbosa NO, Freitas VJF. In vitro embryo production in small ruminants: what is still missing? Anim Reprod. 2023;20(3):e20230055. https://doi.org/10.1590/1984-3143-AR2023-0055.
Article PubMed PubMed Central Google Scholar
Han Q, Li Y, Ji X, Chang L, Li W, Shi J, Liu J, Ni W, Huang X, O’Neill C, Jin X. The addition of antibiotics to embryo culture media caused altered expression of genes in pathways governing DNA integrity in mouse blastocysts. bioRxiv. 2022;486218. https://doi.org/10.1101/2022.03.29.486218.
Men H, Amos-Landgraf JM, Bryda EC, Franklin CL. KSOM-R supports both mouse and rat preimplantation embryo development in vitro. Theriogenology. 2023;198:69–74. https://doi.org/10.1016/j.theriogenology.2022.12.024.
Article CAS PubMed Google Scholar
Rieger D, Grisart B, Semple E, Van Langendonckt A, Betteridge KJ, Dessy F. Comparison of the effects of oviductal cell co-culture and oviductal cell-conditioned medium on the development and metabolic activity of cattle embryos. J Reprod Fertil. 1995;105(1):91–8. https://doi.org/10.1530/jrf.0.1050091.
Article CAS PubMed Google Scholar
Wang YS, Tang S, An ZX, Li WZ, Liu J, Quan FS, Hua S, Zhang Y. Effec
Comments (0)