Advancements in diabetes research and stem cell therapy: a concise review

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, Stein C, Basit A, Chan JCN, Mbanya JC, Pavkov ME, Ramachandaran A, Wild SH, James S, Herman WH, Zhang P, Bommer C, Kuo S, Boyko EJ, Magliano DJ. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022. https://doi.org/10.1016/j.diabres.2021.109119

Article  PubMed  Google Scholar 

Huang Q, Huang Y, Liu J. Mesenchymal stem cells: an excellent candidate for the treatment of diabetes mellitus. Int J Endocrinol. 2021;2021(1):9938658.

PubMed  PubMed Central  Google Scholar 

Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther BioMed Cent. 2020;11(1):1–13.

Google Scholar 

Xiong J, Hu H, Guo R, Wang H, Jiang H. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications. Front Endocrinol Front. 2021;12. https://doi.org/10.3389/fendo.2021.646233

Kang RB, Li Y, Rosselot C, Zhang T, Siddiq M, Rajbhandari P, Stewart AF, Scott DK, Garcia-Ocana A, Lu G. Single-nucleus RNA sequencing of human pancreatic Islets identifies novel gene sets and distinguishes β-cell subpopulations with dynamic transcriptome profiles. Genome Med. 2023;15(1):30.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen K, Zhang J, Huang Y, Tian X, Yang Y, Dong A. Single-cell RNA-seq transcriptomic landscape of human and mouse Islets and pathological alterations of diabetes. iScience. 2022;25(11).

Ji L, Guo W. Single-cell RNA sequencing highlights the roles of C1QB and NKG7 in the pancreatic islet immune microenvironment in type 1 diabetes mellitus. Pharmacol Res. 2023;187:106588.

Article  CAS  PubMed  Google Scholar 

Elgamal RM, Kudtarkar P, Melton RL, Mummey HM, Benaglio P, Okino M-L, Gaulton KJ. An integrated map of cell Type–Specific gene expression in pancreatic Islets. Diabetes. 2023;72(11):1719–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ngara M, Wierup N. Lessons from single-cell RNA sequencing of human Islets. Diabetologia. 2022;65(8):1241–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin C, Hu S, Cai X, Lv F, Yang W, Liu G, Yang X, Ji L. The opportunities and challenges of the disease-modifying immunotherapy for type 1 diabetes: A systematic review and meta-analysis. Pharmacol Res. 2024;203:107157.

Article  CAS  PubMed  Google Scholar 

Eugster A, Lorenc A, Kotrulev M, Kamra Y, Goel M, Steinberg-Bains K, Sabbah S, Dietz S, Bonifacio E, Peakman M, Gomez-Tourino I. Physiological and pathogenic T cell autoreactivity converge in type 1 diabetes. Nat Commun. 2024;15(1):9204.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced delivery strategies for immunotherapy in type I diabetes mellitus. BioDrugs. 2023;37(3):331–52.

Article  PubMed  PubMed Central  Google Scholar 

Sann KM, Rahman M, Thu MM. Immunotherapy for type 1 diabetes. Metab Target Organ Damage. 2024;4(37):1–19.

Google Scholar 

Pinheiro MM, Pinheiro FMM, Garo ML, Pastore D, Pacifici F, Ricordi C, Della-Morte D, Infante M. Prevention and treatment of type 1 diabetes: in search of the ideal combination therapy targeting multiple immunometabolic pathways. Metab Target Organ Damage. 2024;4(19):1–12.

Google Scholar 

Kong M, Xie K, Lv M, Li J, Yao J, Yan K, Wu X, Xu Y, Ye D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: lessons learned and future promise. Biomed Pharmacother. 2021;133:110975.

Article  CAS  PubMed  Google Scholar 

Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME. Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon. 2021;7(3).

Velikova TV, Kabakchieva PP, Assyov YS, Georgiev TА. Targeting inflammatory cytokines to improve type 2 diabetes control. Biomed Res Int. 2021;2021(1):7297419.

Article  PubMed  PubMed Central  Google Scholar 

Guo XR, Wang XL, Li MC, Yuan YH, Chen Y, Zou DD, Bian LJ, Li DS. PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro. Clin Exp Med. 2015;15(4):501–9.

Article  CAS  PubMed  Google Scholar 

Zhao B, Li M, Su Y, Shan S, Qian W, Zhu D, Liu X, Zhang Z. Role of transcription factor FOXM1 in diabetes and its complications (Review). Int J Mol Med. 2023;52(5):1–11.

Article  Google Scholar 

Zhu Y, Liu Q, Zhou Z, Ikeda Y. PDX1, Neurogenin-3, and MAFA: critical transcription regulators for beta cell development and regeneration. Stem Cell Res Ther BioMed Cent. 2017;8(1):1–7.

Google Scholar 

Wang P, Karakose E, Choleva L, Kumar K, DeVita RJ, Garcia-Ocaña A, Stewart AF. Human Beta cell regenerative drug therapy for diabetes: past achievements and future challenges. Front Endocrinol. 2021;12.

Wan X-X, Zhang D-Y, Khan MA, Zheng S-Y, Hu X-M, Zhang Q, Yang R-H, Xiong K. Stem cell transplantation in the treatment of type 1 diabetes mellitus: from insulin replacement to Beta-Cell replacement. Front Endocrinol Front. 2022;13. https://doi.org/10.3389/fendo.2022.859638

Hoang DM, Pham PT, Bach TQ, Ngo ATL, Nguyen QT, Phan TTK, Nguyen GH, Le PTT, Hoang VT, Forsyth NR, Heke M, Nguyen LT. Stem cell-based therapy for human diseases. Sig Transduct Target Ther. 2022;7(1):1–41.

Article  Google Scholar 

Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Generation of functional human pancreatic Β cells in vitro. Cell. 2014;159(2):428–39.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang L, Hu Z-M, Jiang F-X, Wang W. Stem cell therapy for insulin-dependent diabetes: are we still on the road? World J Stem Cells. 2022;14(7):503–12.

Article  PubMed  PubMed Central  Google Scholar 

Gorecka J, Kostiuk V, Fereydooni A, Gonzalez L, Luo J, Dash B, Isaji T, Ono S, Liu S, Lee SR, Xu J, Liu J, Taniguchi R, Yastula B, Hsia HC, Qyang Y, Dardik A. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Res Ther. 2019;10:87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ekmekçi AM, Abusalim M, Erbaş O. Stem cell therapy for diabetes treatment. J Experimental Basic Med Sci. 2024;5(1):60–8.

Google Scholar 

Moreira A, Kahlenberg S, Hornsby P. Therapeutic potential of mesenchymal stem cells for diabetes. J Mol Endocrinol. 2017;59(3):R109–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Bai J, Ji X, Li R, Xuan Y, Wang Y. Comprehensive characterization of four different populations of human mesenchymal stem cells as regards their immune properties, proliferation and differentiation. Int J Mol Med. 2014;34(3):695–704.

Article  PubMed  PubMed Central  Google Scholar 

Montesinos JJ, Flores-Figueroa E, Castillo-Medina S, Flores-Guzmán P, Hernández-Estévez E, Fajardo-Orduña G, Orozco S, Mayani H. Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy. 2009;11(2):163–76.

Article  CAS  PubMed  Google Scholar 

El-Sawah SG, Rashwan HM, Althobaiti F, Aldhahrani A, Fayad E, Shabana E-S, El-Hallous EI, Amen RM. AD-MSCs and BM-MSCs ameliorating effects on the metabolic and Hepato-renal abnormalities in type 1 diabetic rats. Saudi J Biol Sci. 2022;29(2):1053–60.

Article  CAS  PubMed  Google Scholar 

Shaaban S, El-Shamy H, Gouda M, Darwish MK, Abd El-Lateef HM, Khalaf MM, El-Hallous EI, Radwan KH, Rashwan HM, El-Sawah SG. N,N′-Diphenyl-1,4-phenylenediamine antioxidant’s potential role in enhancing the pancreatic antioxidant, Immunomodulatory, and Anti-Apoptotic therapeutic capabilities of Adipose-Derived stem cells in type I diabetic rats. Antioxid (Basel). 2022;12(1):58.

Article  Google Scholar 

Kawada-Horitani E, Kita S, Okita T, Nakamura Y, Nishida H, Honma Y, Fukuda S, Tsugawa-Shimizu Y, Kozawa J, Sakaue T, Kawachi Y, Fujishima Y, Nishizawa H, Azuma M, Maeda N, Shimomura I. Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint Blockade. Diabetologia. 2022;65(7):1185–97.

Article  CAS  PubMed  PubMed Central  Google Scholar 

El-Sawah S, Althobaiti F, Rashwan H, Aldhahrani A, Abdel-Dayem M, Fayad E, Amen R, Shabana E, El-Hallous E. Anti-inflammatory and antioxidant potential capacities of AD-MSCs and BM-MSCs in suppressing pancreatic β-cells auto-immunity and apoptosis in rats with T1DM induced model. Biocell. 2021;46(3):745–57.

Article  Google Scholar 

El-Sawah SG, Nabil A, Rashwan H, Khalil DY, Khalil RY. BM-MSCs Immunomodulatory, anti-inflammatory, anti-apoptotic and antioxidant capacity roles in modulating the altered tissues’ oxidative stress status in STZ-diabetic rats: in comparison to the standard insulin treatment. Int J Adv Res (Indore). 2020;8(8):591–617.

Article  CAS  Google Scholar 

Abd El-Lateef HM, Qahl S, Fayad E, Altalhi S, Jafri I, Shabana E, Darwish M, Maher R, Shaaban S, El-Sawah S. The potency of N, N’-diphenyl-1,4-phenylenediamine and adipose-derived stem cell co-administration in alleviating hepatorenal dysfunction complications associated with type 1 diabetes mellitus in rats. Biocell. 2023;47(8):1885–95.

Article 

Comments (0)

No login
gif