TMAO promotes metabolic dysfunction-associated fatty liver disease (MAFLD) development through long-non coding RNA- highly upregulated liver cancer (HULC)

McPherson S, et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management. J Hepatol. 2015;62(5):1148–55.

Article  PubMed  Google Scholar 

Geh D, Anstee QM, and Reeves HL 2021 NAFLD-associated HCC: progress and opportunities. J Hepatocell Carcinoma. 223 239.

Song Q, Zhang X. The role of gut–liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines. 2022;10(3):524.

Article  PubMed  PubMed Central  Google Scholar 

Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition. 2015;31(11–12):1317–23.

Article  CAS  PubMed  Google Scholar 

He M, et al. Gut microbiota-derived trimethylamine-N-oxide: A bridge between dietary fatty acid and cardiovascular disease? Food Res Int. 2020;138:109812.

Article  CAS  PubMed  Google Scholar 

Yang G, Zhang X. TMAO promotes apoptosis and oxidative stress of pancreatic acinar cells by mediating IRE1α-XBP-1 pathway. Saudi J Gastroenterol. 2021;27(6):361.

Article  PubMed  PubMed Central  Google Scholar 

Fang Q, et al. Trimethylamine N-oxide exacerbates renal inflammation and fibrosis in rats with diabetic kidney disease. Front Physiol. 2021;12:682482.

Article  PubMed  PubMed Central  Google Scholar 

Yang G, et al. Nobiletin prevents trimethylamine oxide-induced vascular inflammation via inhibition of the NF-κB/MAPK pathways. J Agric Food Chem. 2019;67(22):6169–76.

Article  CAS  PubMed  Google Scholar 

Deng Y, et al. Effects of Shugan-Jianpi recipe on the expression of the p38 MAPK/NF-κB signaling pathway in the hepatocytes of NAFLD rats. Medicines. 2018;5(3):106.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imarisio C, et al. Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury. Free Radical Biol Med. 2017;112:141–8.

Article  CAS  Google Scholar 

Scott MJ, Billiar TR. β2-Integrin-induced p38 MAPK Activation Is a Key Mediator in the CD14/TLR4/MD2-dependent Uptake of Lipopolysaccharide by Hepatocytes∗. J Biol Chem. 2008;283(43):29433–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stojsavljević S, et al. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(48):18070.

Article  PubMed  PubMed Central  Google Scholar 

Niederreiter L, Tilg H. Cytokines and fatty liver diseases. Liver Research. 2018;2(1):14–20.

Article  Google Scholar 

Thirunavukkarasu C, Watkins SC, Gandhi CR. Mechanisms of endotoxin-induced NO, IL-6, and TNF-α production in activated rat hepatic stellate cells: Role of p38 MAPK. Hepatology. 2006;44(2):389–98.

Article  CAS  PubMed  Google Scholar 

Fanaei H, et al. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. Avicenna J Phytomed. 2021;11(5):527.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang X, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol. 2019;71(1):163–74.

Article  CAS  PubMed  Google Scholar 

Ghafouri-Fard S, et al. Highly upregulated in liver cancer (HULC): An update on its role in carcinogenesis. J Cell Physiol. 2020;235(12):9071–9.

Article  CAS  PubMed  Google Scholar 

Xin X, et al. Long noncoding RNA HULC accelerates liver cancer by inhibiting PTEN via autophagy cooperation to miR15a. Mol Cancer. 2018;17(1):1–16.

Article  Google Scholar 

Yu X, et al. HULC: an oncogenic long non-coding RNA in human cancer. J Cell Mol Med. 2017;21(2):410–7.

Article  CAS  PubMed  Google Scholar 

Shen X, et al. Inhibition of lncRNA HULC improves hepatic fibrosis and hepatocyte apoptosis by inhibiting the MAPK signaling pathway in rats with nonalcoholic fatty liver disease. J Cell Physiol. 2019;234(10):18169–79.

Article  CAS  PubMed  Google Scholar 

Cui M, et al. Long noncoding RNA HULC modulates abnormal lipid metabolism in Hepatoma cells through an miR-9–mediated RXRA signaling pathway. Can Res. 2015;75(5):846–57.

Article  CAS  Google Scholar 

Moradzad M, et al. Possible correlation between high circulatory levels of trimethylamine-N-oxide and 2177G> C polymorphisms of hepatic flavin containing monooxygenase 3 in Kurdish Population with non-alcoholic fatty liver disease. Mol Biol Rep. 2022;49(7):5927–37.

Article  CAS  PubMed  Google Scholar 

Theofilis P, Vordoni A, Kalaitzidis RG. Trimethylamine N-Oxide levels in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Metabolites. 2022;12(12):1243.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abdolahi A et al., 2022 Vaspin attenuates steatosis-induced fibrosis via GRP78 receptor by targeting AMPK signaling pathway. J Physiol Biochem. 1 13.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

Article  CAS  PubMed  Google Scholar 

Chen Y-M, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6(1):19076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ye M, et al. Scoparone inhibits the development of hepatocellular carcinoma by modulating the p38 MAPK/Akt/NF-κB signaling in nonalcoholic fatty liver disease mice. Environ Toxicol. 2024;39(2):551–61.

Article  CAS  PubMed  Google Scholar 

Zhu M, et al. Amorphous selenium nanodots alleviate non-alcoholic fatty liver disease via activating VEGF receptor 1 to further inhibit phosphorylation of JNK/p38 MAPK pathways. Eur J Pharmacol. 2022;932:175235.

Article  CAS  PubMed  Google Scholar 

Alshehade S, et al. The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: New insights and future directions. Life Sci. 2022;305:120732.

Article  CAS  PubMed  Google Scholar 

Stefania K, et al. TMAO enhances TNF-α mediated fibrosis and release of inflammatory mediators from renal fibroblasts. Sci Rep. 2024;14(1):9070.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trépo E, et al. PNPLA3 gene in liver diseases. J Hepatol. 2016;65(2):399–412.

Article  PubMed  Google Scholar 

Li T, et al. Activated NK cells kill hepatic stellate cells via p38/PI3K signaling in a TRAIL-involved degranulation manner. J Leukoc Biol. 2019;105(4):695–704.

Article  CAS  PubMed  Google Scholar 

Singal AG, et al. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: a meta-analysis. Am J Gastroenterol. 2014;109(3):325.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatori K, Iwasaki T, Wada R. Effect of urea and trimethylamine N-oxide on the binding between actin molecules. Biophys Chem. 2014;193:20–6.

Article 

Comments (0)

No login
gif