Revolutionizing diabetes care: the role of artificial intelligence in prevention, diagnosis, and patient care

King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31. https://doi.org/10.2337/diacare.21.9.1414.

Article  CAS  PubMed  Google Scholar 

Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.

Article  PubMed  Google Scholar 

International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation. 2017. Available at: http://www.diabetesatlas.org

International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.

Google Scholar 

Aggarwal M, Madhukar M. IBM’s Watson analytics for health care: a miracle made true. In: cloud computing systems and applications in healthcare. IGI Global. 2016;123–39. https://doi.org/10.4018/978-1-5225-1002-4.ch007.

Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: literature review. J Med Internet Res. 2018;20(5):e10775. https://doi.org/10.2196/10775.

Article  PubMed  PubMed Central  Google Scholar 

Kaabouch N, Peters EJG, Bharara M, Armstrong DG. Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images. J Biomed Opt. 2010;15(6):061710. https://doi.org/10.1117/1.3524233.

Article  Google Scholar 

Yap MH, Hensor EMA, Al-Basha S, et al. A new mobile application for standardizing diabetic foot images. J Diabetes Sci Technol. 2018;12(1):169–73. https://doi.org/10.1177/1932296817713761.

Article  PubMed  Google Scholar 

Rahmani Katigari M, Ayatollahi H, Malek M, Kamkar Haghighi M. Fuzzy expert system for diagnosing diabetic neuropathy. World J Diabetes. 2017;8(9):415–23. https://doi.org/10.4239/wjd.v8.i2.80.

Article  Google Scholar 

Buch V, Varughese G, Maruthappu M. Artificial intelligence in diabetes care. Diabet Med. 2018;35(4):495–502. https://doi.org/10.1111/dme.13587.

Article  CAS  PubMed  Google Scholar 

Yeung S, Downing NL, Fei-Fei L, Milstein A. Bedside computer vision—moving artificial intelligence from driver assistance to patient safety. N Engl J Med. 2018;378:1271–3. https://doi.org/10.1056/NEJMp1716891.

Article  PubMed  Google Scholar 

Holland JH. Adaptation in natural and artificial systems: an introductory analysis with application to biology. Ann Arbor, MI: University of Michigan Press; 1975.

Google Scholar 

Funnell MM, Brown TL, Childs BP, et al. National standards for diabetes self-management education. Diabetes Care. 2010;33(Suppl 1):S89–96. https://doi.org/10.2337/dc10-S089.

Article  PubMed  PubMed Central  Google Scholar 

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar R. Research on safety management plan based on risk assessment in mining. NeuroQuantology. 2022;20(11):9948. https://doi.org/10.48047/nq.2022.20.11.nq66988.

Article  Google Scholar 

Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ Online. 2011;343:d7163. https://doi.org/10.1136/bmj.d7163.

Article  PubMed  PubMed Central  Google Scholar 

Fu Q, Zhu L, Zhang Y, et al. A Chinese risk score model for identifying postprandial hyperglycemia without oral glucose tolerance test. Diabetes Metab Res Rev. 2014;30(3):229–35. https://doi.org/10.1002/dmrr.2490.

Article  CAS  Google Scholar 

Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy. PLoS ONE. 2017;12(6):e0179790. https://doi.org/10.1371/journal.pone.0179790.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol. 2018;13(11):1057–65. https://doi.org/10.1038/s41565-018-0244-6.

Article  CAS  PubMed  Google Scholar 

Wu H, Yang S, Huang Z, He J, Wang X. Type 2 diabetes mellitus prediction model based on data mining. Inf Med Unlocked. 2018;10:100–7.

Article  Google Scholar 

Rajesh K, Sangeetha V. Application of data mining methods and techniques for diabetes diagnosis. Int J Eng Innov Technol (IJEIT). 2008;9001:1–5.

Google Scholar 

Kaur H, Kumari V. Predictive modeling and analytics for diabetes using a machine learning approach. Appl Comput Inf. 2022;18(1–2):90–102. https://doi.org/10.1016/j.aci.2018.12.004.

Article  Google Scholar 

Lu H, Uddin S, Hajati F, Moni MA, Khushi M. A patient network-based machine learning model for disease prediction: the case of type 2 diabetes mellitus. Appl Intell. 2022;52(1):1–16. https://doi.org/10.1007/s10489-021-02533-w.

Article  Google Scholar 

Porumb M, Stranges S, Pescapè A, Pecchia L. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep. 2020;10(1):170. https://doi.org/10.1038/s41598-019-56927-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Porumb M, Griffen C, Hattersley J, Pecchia L. Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomed Signal Process Control. 2020;62:102054. https://doi.org/10.1016/j.bspc.2020.102054.

Article  Google Scholar 

Cobelli C, Renard E, Kovatchev B, et al. Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes. Diabetes Care. 2012;35(5):e65. https://doi.org/10.2337/dc12-0660.

Article  PubMed  PubMed Central  Google Scholar 

Kovatchev BP, Renard E, Buckingham BA, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2014;37(7):1789–96. https://doi.org/10.2337/dc13-2076.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kropff J, Choudhary P, Neupane S, et al. Two-month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015;3(12):939–47.

Article  PubMed  Google Scholar 

Anderson SM, Buckingham BA, Breton MD, et al. Multinational home use of closed-loop control is safe and effective. Diabetes Care. 2016;39(7):1143–50. https://doi.org/10.2337/dc15-2468.

Article  PubMed  PubMed Central  Google Scholar 

Nimri R, Phillip M, Mandel D, et al. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care. 2014;37(11):3025–32. https://doi.org/10.2337/dc14-0835.

Article  CAS  PubMed  Google Scholar 

Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373(22):2129–40. https://doi.org/10.1056/NEJMoa1509351.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz JL, Sherr JL, Cengiz E, Carria L, Roy A, Voskanyan G, Tamborlane WV, Weinzimer SA. Effect of insulin feedback on closed-loop glucose control: a crossover study. J Diabetes Sci Technol. 2012;6(5):1123–30. https://doi.org/10.1177/193229681200600517.

Article  PubMed  PubMed Central  Google Scholar 

Bassi M, Franzone D, Dufour F, Strati MF, Scalas M, Tantari G, Aloi C, Salina A, d’Annunzio G, Maghnie M, Minuto N. Automated insulin delivery (AID) systems: use and efficacy in children and adults with type 1 diabetes and other forms of diabetes in Europe in early 2023. Life. 2023;13(3):783. https://doi.org/10.3390/life13030783.

Article  CAS  PubMed  PubMed Central  Google Scholar 

DeVries JH. The artificial pancreas—ready for prime time? Lancet Diabetes Endocrinol. 2017;5(4):238–9. https://doi.org/10.1016/S2213-8587(17)30008-6.

Comments (0)

No login
gif