King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–31. https://doi.org/10.2337/diacare.21.9.1414.
Article CAS PubMed Google Scholar
Sun H, Saeedi P, Karuranga S, et al. IDF diabetes atlas: global, regional, and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119. https://doi.org/10.1016/j.diabres.2021.109119.
International Diabetes Federation. IDF Diabetes Atlas, 8th edn. Brussels, Belgium: International Diabetes Federation. 2017. Available at: http://www.diabetesatlas.org
International Diabetes Federation. IDF diabetes atlas. 7th ed. Brussels, Belgium: International Diabetes Federation; 2015.
Aggarwal M, Madhukar M. IBM’s Watson analytics for health care: a miracle made true. In: cloud computing systems and applications in healthcare. IGI Global. 2016;123–39. https://doi.org/10.4018/978-1-5225-1002-4.ch007.
Contreras I, Vehi J. Artificial intelligence for diabetes management and decision support: literature review. J Med Internet Res. 2018;20(5):e10775. https://doi.org/10.2196/10775.
Article PubMed PubMed Central Google Scholar
Kaabouch N, Peters EJG, Bharara M, Armstrong DG. Predicting neuropathic ulceration: analysis of static temperature distributions in thermal images. J Biomed Opt. 2010;15(6):061710. https://doi.org/10.1117/1.3524233.
Yap MH, Hensor EMA, Al-Basha S, et al. A new mobile application for standardizing diabetic foot images. J Diabetes Sci Technol. 2018;12(1):169–73. https://doi.org/10.1177/1932296817713761.
Rahmani Katigari M, Ayatollahi H, Malek M, Kamkar Haghighi M. Fuzzy expert system for diagnosing diabetic neuropathy. World J Diabetes. 2017;8(9):415–23. https://doi.org/10.4239/wjd.v8.i2.80.
Buch V, Varughese G, Maruthappu M. Artificial intelligence in diabetes care. Diabet Med. 2018;35(4):495–502. https://doi.org/10.1111/dme.13587.
Article CAS PubMed Google Scholar
Yeung S, Downing NL, Fei-Fei L, Milstein A. Bedside computer vision—moving artificial intelligence from driver assistance to patient safety. N Engl J Med. 2018;378:1271–3. https://doi.org/10.1056/NEJMp1716891.
Holland JH. Adaptation in natural and artificial systems: an introductory analysis with application to biology. Ann Arbor, MI: University of Michigan Press; 1975.
Funnell MM, Brown TL, Childs BP, et al. National standards for diabetes self-management education. Diabetes Care. 2010;33(Suppl 1):S89–96. https://doi.org/10.2337/dc10-S089.
Article PubMed PubMed Central Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. https://doi.org/10.1093/nar/29.9.e45.
Article CAS PubMed PubMed Central Google Scholar
Kumar R. Research on safety management plan based on risk assessment in mining. NeuroQuantology. 2022;20(11):9948. https://doi.org/10.48047/nq.2022.20.11.nq66988.
Noble D, Mathur R, Dent T, Meads C, Greenhalgh T. Risk models and scores for type 2 diabetes: systematic review. BMJ Online. 2011;343:d7163. https://doi.org/10.1136/bmj.d7163.
Article PubMed PubMed Central Google Scholar
Fu Q, Zhu L, Zhang Y, et al. A Chinese risk score model for identifying postprandial hyperglycemia without oral glucose tolerance test. Diabetes Metab Res Rev. 2014;30(3):229–35. https://doi.org/10.1002/dmrr.2490.
Takahashi H, Tampo H, Arai Y, Inoue Y, Kawashima H. Applying artificial intelligence to disease staging: deep learning for improved staging of diabetic retinopathy. PLoS ONE. 2017;12(6):e0179790. https://doi.org/10.1371/journal.pone.0179790.
Article CAS PubMed PubMed Central Google Scholar
Son D, Kang J, Vardoulis O, et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol. 2018;13(11):1057–65. https://doi.org/10.1038/s41565-018-0244-6.
Article CAS PubMed Google Scholar
Wu H, Yang S, Huang Z, He J, Wang X. Type 2 diabetes mellitus prediction model based on data mining. Inf Med Unlocked. 2018;10:100–7.
Rajesh K, Sangeetha V. Application of data mining methods and techniques for diabetes diagnosis. Int J Eng Innov Technol (IJEIT). 2008;9001:1–5.
Kaur H, Kumari V. Predictive modeling and analytics for diabetes using a machine learning approach. Appl Comput Inf. 2022;18(1–2):90–102. https://doi.org/10.1016/j.aci.2018.12.004.
Lu H, Uddin S, Hajati F, Moni MA, Khushi M. A patient network-based machine learning model for disease prediction: the case of type 2 diabetes mellitus. Appl Intell. 2022;52(1):1–16. https://doi.org/10.1007/s10489-021-02533-w.
Porumb M, Stranges S, Pescapè A, Pecchia L. Precision medicine and artificial intelligence: a pilot study on deep learning for hypoglycemic events detection based on ECG. Sci Rep. 2020;10(1):170. https://doi.org/10.1038/s41598-019-56927-5.
Article CAS PubMed PubMed Central Google Scholar
Porumb M, Griffen C, Hattersley J, Pecchia L. Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomed Signal Process Control. 2020;62:102054. https://doi.org/10.1016/j.bspc.2020.102054.
Cobelli C, Renard E, Kovatchev B, et al. Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes. Diabetes Care. 2012;35(5):e65. https://doi.org/10.2337/dc12-0660.
Article PubMed PubMed Central Google Scholar
Kovatchev BP, Renard E, Buckingham BA, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2014;37(7):1789–96. https://doi.org/10.2337/dc13-2076.
Article CAS PubMed PubMed Central Google Scholar
Kropff J, Choudhary P, Neupane S, et al. Two-month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015;3(12):939–47.
Anderson SM, Buckingham BA, Breton MD, et al. Multinational home use of closed-loop control is safe and effective. Diabetes Care. 2016;39(7):1143–50. https://doi.org/10.2337/dc15-2468.
Article PubMed PubMed Central Google Scholar
Nimri R, Phillip M, Mandel D, et al. MD-Logic overnight control for 6 weeks of home use in patients with type 1 diabetes: randomized crossover trial. Diabetes Care. 2014;37(11):3025–32. https://doi.org/10.2337/dc14-0835.
Article CAS PubMed Google Scholar
Thabit H, Tauschmann M, Allen JM, et al. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373(22):2129–40. https://doi.org/10.1056/NEJMoa1509351.
Article CAS PubMed PubMed Central Google Scholar
Ruiz JL, Sherr JL, Cengiz E, Carria L, Roy A, Voskanyan G, Tamborlane WV, Weinzimer SA. Effect of insulin feedback on closed-loop glucose control: a crossover study. J Diabetes Sci Technol. 2012;6(5):1123–30. https://doi.org/10.1177/193229681200600517.
Article PubMed PubMed Central Google Scholar
Bassi M, Franzone D, Dufour F, Strati MF, Scalas M, Tantari G, Aloi C, Salina A, d’Annunzio G, Maghnie M, Minuto N. Automated insulin delivery (AID) systems: use and efficacy in children and adults with type 1 diabetes and other forms of diabetes in Europe in early 2023. Life. 2023;13(3):783. https://doi.org/10.3390/life13030783.
Article CAS PubMed PubMed Central Google Scholar
DeVries JH. The artificial pancreas—ready for prime time? Lancet Diabetes Endocrinol. 2017;5(4):238–9. https://doi.org/10.1016/S2213-8587(17)30008-6.
Comments (0)