Spatial mapping of the AA-PGE-EP axis in multiple sclerosis lesions

Aboul-Enein F, Rauschka H, Kornek B, Stadelmann C, Stefferl A, Brück W et al (2003) Preferential loss of myelin-associated glycoprotein reflects hypoxia-like white matter damage in stroke and inflammatory brain diseases. J Neuropathol Exp Neurol 62:25–33. https://doi.org/10.1093/jnen/62.1.25

Article  CAS  PubMed  Google Scholar 

Andreasson K (2010) Emerging roles of PGE2 receptors in models of neurological disease. Prostaglandins Other Lipid Mediat 91:104–112. https://doi.org/10.1016/j.prostaglandins.2009.04.003

Article  CAS  PubMed  Google Scholar 

Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468. https://doi.org/10.1002/ana.20016

Article  PubMed  Google Scholar 

Brenneis C, Coste O, Altenrath K, Angioni C, Schmidt H, Schuh CD et al (2011) Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem 286:2331–2342. https://doi.org/10.1074/jbc.M110.157362

Article  CAS  PubMed  Google Scholar 

Broos JY, Loonstra FC, de Ruiter LRJ, Gouda M, Fung WH, Schoonheim MM et al (2023) Association of Arachidonic Acid-Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology 101:e533–e545. https://doi.org/10.1212/wnl.0000000000207459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buijsen RAM, Gardiner SL, Bouma MJ, van der Graaf LM, Boogaard MW, Pepers BA et al (2018) Generation of 3 spinocerebellar ataxia type 1 (SCA1) patient-derived induced pluripotent stem cell lines LUMCi002-A, B, and C and 2 unaffected sibling control induced pluripotent stem cell lines LUMCi003-A and B. Stem Cell Res 29:125–128. https://doi.org/10.1016/j.scr.2018.03.018

Article  CAS  PubMed  Google Scholar 

Chen Y, Chen L, Lun ATL, Baldoni PL, Smyth GK (2024) edgeR 4.0: powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. https://doi.org/10.1101/2024.01.21.576131

Cui L, Zhao Y, Pan Y, Zheng X, Shao D, Jia Y et al (2017) Chemotherapy induces ovarian cancer cell repopulation through the caspase 3-mediated arachidonic acid metabolic pathway. Onco Targets Ther 10:5817–5826. https://doi.org/10.2147/ott.S150456

Article  PubMed  PubMed Central  Google Scholar 

De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F et al (2001) Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124:1635–1645. https://doi.org/10.1093/brain/124.8.1635

Article  PubMed  Google Scholar 

Di Penta A, Chiba A, Alloza I, Wyssenbach A, Yamamura T, Villoslada P et al (2013) A trifluoromethyl analogue of celecoxib exerts beneficial effects in neuroinflammation. PLoS ONE 8:e83119. https://doi.org/10.1371/journal.pone.0083119

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dore-Duffy P, Donaldson JO, Koff T, Longo M, Perry W (1986) Prostaglandin release in multiple sclerosis. Neurology 36:1587–1587. https://doi.org/10.1212/WNL.36.12.1587

Article  CAS  PubMed  Google Scholar 

Duncan KD, Bergman H-M, Lanekoff I (2017) A pneumatically assisted nanospray desorption electrospray ionization source for increased solvent versatility and enhanced metabolite detection from tissue. Analyst 142:3424–3431. https://doi.org/10.1039/C7AN00901A

Article  CAS  PubMed  Google Scholar 

Duncan KD, Fang R, Yuan J, Chu RK, Dey SK, Burnum-Johnson KE et al (2018) Quantitative mass spectrometry imaging of prostaglandins as silver ion adducts with nanospray desorption electrospray ionization. Anal Chem 90:7246–7252. https://doi.org/10.1021/acs.analchem.8b00350

Article  CAS  PubMed  PubMed Central  Google Scholar 

Esaki Y, Li Y, Sakata D, Yao C, Segi-Nishida E, Matsuoka T et al (2010) Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 107:12233–12238. https://doi.org/10.1073/pnas.0915112107

Article  PubMed  PubMed Central  Google Scholar 

Esaki Y, Li Y, Sakata D, Yao C, Segi-Nishida E, Matsuoka T et al (2010) Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 107:12233–12238. https://doi.org/10.1073/pnas.0915112107

Article  PubMed  PubMed Central  Google Scholar 

Fitzpatrick FA, Soberman R (2001) Regulated formation of eicosanoids. J Clin Invest 107:1347–1351. https://doi.org/10.1172/jci13241

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ganesh T (2023) Targeting EP2 receptor for drug discovery: strengths, weaknesses, opportunities, and threats (SWOT) analysis. J Med Chem 66:9313–9324. https://doi.org/10.1021/acs.jmedchem.3c00655

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giordano A, Stridh P, Preziosa P, Pisa M, Sorosina M, Mascia E, Santoro S, Misra K, Clarelli F, Ferrè L et al (2024) Genetic variation in <em>HIF1A</em> is associated with smoldering inflammation and disease progression in Multiple Sclerosis. https://doi.org/10.1101/2024.03.15.24304290

Greco A, Minghetti L, Sette G, Fieschi C, Levi G (1999) Cerebrospinal fluid isoprostane shows oxidative stress in patients with multiple sclerosis. Neurology 53:1876–1876. https://doi.org/10.1212/WNL.53.8.1876

Article  CAS  PubMed  Google Scholar 

Guttmann CR, Ahn SS, Hsu L, Kikinis R, Jolesz FA (1995) The evolution of multiple sclerosis lesions on serial MR. AJNR Am J Neuroradiol 16:1481–1491

CAS  PubMed  PubMed Central  Google Scholar 

Hansen CE, Kamermans A, Mol K, Berve K, Rodriguez-Mogeda C, Fung WK et al (2024) Inflammation-induced TRPV4 channels exacerbate blood–brain barrier dysfunction in multiple sclerosis. J Neuroinflammation 21:72. https://doi.org/10.1186/s12974-024-03069-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Higgins AJ, Lees P (1984) The acute inflammatory process, arachidonic acid metabolism and the mode of action of anti-inflammatory drugs. Equine Vet J 16:163–175. https://doi.org/10.1111/j.2042-3306.1984.tb01893.x

Article  CAS  PubMed  Google Scholar 

Hoshino T, Nakaya T, Homan T, Tanaka K, Sugimoto Y, Araki W et al (2007) Involvement of prostaglandin E2 in production of amyloid-beta peptides both in vitro and in vivo. J Biol Chem 282:32676–32688. https://doi.org/10.1074/jbc.M703087200

Article  CAS  PubMed  Google Scholar 

Hsiao CC, Sankowski R, Prinz M, Smolders J, Huitinga I, Hamann J (2021) GPCRomics of homeostatic and disease-associated human microglia. Front Immunol 12:674189. https://doi.org/10.3389/fimmu.2021.674189

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ikeda-Matsuo Y, Ikegaya Y, Matsuki N, Uematsu S, Akira S, Sasaki Y (2005) Microglia-specific expression of microsomal prostaglandin E2 synthase-1 contributes to lipopolysaccharide-induced prostaglandin E2 production. J Neurochem 94:1546–1558. https://doi.org/10.1111/j.1471-4159.2005.03302.x

Article  CAS  PubMed  Google Scholar 

Iwasa S, Koyama T, Nishino M, Kondo S, Sudo K, Yonemori K et al (2023) First-in-human study of ONO-4578, an antagonist of prostaglandin E(2) receptor 4, alone and with nivolumab in solid tumors. Cancer Sci 114:211–220. https://doi.org/10.1111/cas.15574

Article  CAS  PubMed  Google Scholar 

Jamee F, Khayati RM, Guttmann CRG, Cotton F, Nabavi SM (2022) Prediction of multiple sclerosis lesion evolution patterns in brain MR images using weekly time series analysis. J Med Biol Eng 42:873–888. https://doi.org/10.1007/s40846-022-00756-x

Article  Google Scholar 

Jiang C, Caskurlu A, Ganesh T, Dingledine R (2020) Inhibition of the prostaglandin EP2 receptor prevents long-term cognitive impairment in a model of systemic inflammation. Brain Behavior Immunity Health 8:100132. https://doi.org/10.1016/j.bbih.2020.100132

Article  PubMed  PubMed Central 

Comments (0)

No login
gif