SARS-CoV-2 infection of human cortical cells is influenced by the interaction between aneuploidy and biological sex: insights from a Down syndrome in vitro model

Ahmed W, Feng J, Zhang Y, Chen L (2023) SARS-CoV-2 and brain health: new challenges in the era of the pandemic. Microorganisms 11. https://doi.org/10.3390/microorganisms11102511

Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC (2021) Aging with down syndrome-where are we now and where are we going? J Clin Med 10. https://doi.org/10.3390/jcm10204687

Amalraj J, Cutler SJ, Ghazawi I, Boyle GM, Ralph SJ (2013) REST negatively and ISGF3 positively regulate the human STAT1 gene in melanoma. Mol Cancer Ther 12:1288–1298. https://doi.org/10.1158/1535-7163.MCT-12-0923

Article  CAS  PubMed  Google Scholar 

Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5:e1000582. https://doi.org/10.1371/journal.ppat.1000582

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bayati A, Kumar R, Francis V, McPherson PS (2021) SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 296:100306. https://doi.org/10.1016/j.jbc.2021.100306

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik Oet al (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3. https://doi.org/10.26508/lsa.202000786

Beyer DK, Forero A (2022) Mechanisms of antiviral immune evasion of SARS-CoV-2. J Mol Biol 434:167265. https://doi.org/10.1016/j.jmb.2021.167265

Article  CAS  PubMed  Google Scholar 

Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R (2020) Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 11:1555–1562. https://doi.org/10.1021/acschemneuro.0c00210

Article  CAS  PubMed  Google Scholar 

Bloise E, Zhang J, Nakpu J, Hamada H, Dunk CE, Li S, Imperio GE, Nadeem L, Kibschull M, Lye Pet al (2021) Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. Am J Obstet Gynecol 224:298 e291–298 e298. https://doi.org/10.1016/j.ajog.2020.08.055

Blume C, Jackson CL, Spalluto CM, Legebeke J, Nazlamova L, Conforti F et al (2021) A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet 53:205–214. https://doi.org/10.1038/s41588-020-00759-x

Article  CAS  PubMed  Google Scholar 

Bosch BJ, Bartelink W, Rottier PJ (2008) Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol 82:8887–8890. https://doi.org/10.1128/JVI.00415-08

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

Article  CAS  PubMed  Google Scholar 

Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S et al (2020) First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol 86:678–679. https://doi.org/10.23736/S0375-9393.20.14772-2

Article  PubMed  Google Scholar 

Bull MJ (2020) Down syndrome. N Engl J Med 382:2344–2352. https://doi.org/10.1056/NEJMra1706537

Article  PubMed  Google Scholar 

Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL et al (2014) Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10:e1004502. https://doi.org/10.1371/journal.ppat.1004502

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC (2021) Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun 95:7–14. https://doi.org/10.1016/j.bbi.2020.12.031

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888. https://doi.org/10.1016/0896-6273(95)90232-5

Article  CAS  PubMed  Google Scholar 

Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H et al (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688. https://doi.org/10.1016/s0896-6273(02)00604-9

Article  CAS  PubMed  Google Scholar 

Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in down’s syndrome neurons in vitro. Nature 378:776–779. https://doi.org/10.1038/378776a0

Article  CAS  PubMed  Google Scholar 

Busciglio J, Yeh J, Yankner BA (1993) beta-Amyloid neurotoxicity in human cortical culture is not mediated by excitotoxins. J Neurochem 61:1565–1568. https://doi.org/10.1111/j.1471-4159.1993.tb13658.x

Article  CAS  PubMed  Google Scholar 

Cama VF, Marin-Prida J, Acosta-Rivero N, Acosta EF, Diaz LO, Casadesus AV et al (2021) The microglial NLRP3 inflammasome is involved in human SARS-CoV-2 cerebral pathogenicity: a report of three post-mortem cases. J Neuroimmunol 361:577728. https://doi.org/10.1016/j.jneuroim.2021.577728

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860. https://doi.org/10.1126/science.abd2985

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carod-Artal FJ, Garcia-Monco JC (2021) Epidemiology, pathophysiology, and classification of the neurological symptoms of post-COVID-19 syndrome. Neurol Perspect 1:S5–S15. https://doi.org/10.1016/j.neurop.2021.07.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casagrande M, Fitzek A, Spitzer M, Puschel K, Glatzel M, Krasemann S et al (2022) Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. Br J Ophthalmol 106:1313–1317. https://doi.org/10.1136/bjophthalmol-2020-318618

Article  PubMed  Google Scholar 

Case JB, Rothlauf PW, Chen RE, Liu Z, Zhao H, Kim AS et al (2020) Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. Cell Host Microbe 28(475–485):e475. https://doi.org/10.1016/j.chom.2020.06.021

Article  CAS  Google Scholar 

Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M et al (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285:10078–10086. https://doi.org/10.1074/jbc.M109.034793

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH et al (2021) SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 95:e0086221. https://doi.org/10.1128/JVI.00862-21

Article  PubMed  Google Scholar 

Chung H, Green PHR, Wang TC, Kong XF (2021) Interferon-driven immune dysregulation in down syndrome: a review of the evidence. J Inflamm Res 14:5187–5200. https://doi.org/10.2147/JIR.S280953

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clift AK, Coupland CAC, Keogh RH, Hemingway H, Hippisley-Cox J (2021) COVID-19 mortality risk in down syndrome: results from a cohort study of 8 million adults. Ann Intern Med 174:572–576. https://doi.org/10.7326/M20-4986

Article  PubMed  Google Scholar 

Cosentino G, Todisco M, Hota N, Della Porta G, Morbini P, Tassorelli C et al (2021) Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: a critical systematic review. Eur J Neurol 28:3856–3865. https://doi.org/10.1111/ene.15045

Comments (0)

No login
gif