Ahmed W, Feng J, Zhang Y, Chen L (2023) SARS-CoV-2 and brain health: new challenges in the era of the pandemic. Microorganisms 11. https://doi.org/10.3390/microorganisms11102511
Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC (2021) Aging with down syndrome-where are we now and where are we going? J Clin Med 10. https://doi.org/10.3390/jcm10204687
Amalraj J, Cutler SJ, Ghazawi I, Boyle GM, Ralph SJ (2013) REST negatively and ISGF3 positively regulate the human STAT1 gene in melanoma. Mol Cancer Ther 12:1288–1298. https://doi.org/10.1158/1535-7163.MCT-12-0923
Article CAS PubMed Google Scholar
Avadhanula V, Weasner BP, Hardy GG, Kumar JP, Hardy RW (2009) A novel system for the launch of alphavirus RNA synthesis reveals a role for the Imd pathway in arthropod antiviral response. PLoS Pathog 5:e1000582. https://doi.org/10.1371/journal.ppat.1000582
Article CAS PubMed PubMed Central Google Scholar
Bayati A, Kumar R, Francis V, McPherson PS (2021) SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J Biol Chem 296:100306. https://doi.org/10.1016/j.jbc.2021.100306
Article CAS PubMed PubMed Central Google Scholar
Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik Oet al (2020) TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance 3. https://doi.org/10.26508/lsa.202000786
Beyer DK, Forero A (2022) Mechanisms of antiviral immune evasion of SARS-CoV-2. J Mol Biol 434:167265. https://doi.org/10.1016/j.jmb.2021.167265
Article CAS PubMed Google Scholar
Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R (2020) Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci 11:1555–1562. https://doi.org/10.1021/acschemneuro.0c00210
Article CAS PubMed Google Scholar
Bloise E, Zhang J, Nakpu J, Hamada H, Dunk CE, Li S, Imperio GE, Nadeem L, Kibschull M, Lye Pet al (2021) Expression of severe acute respiratory syndrome coronavirus 2 cell entry genes, angiotensin-converting enzyme 2 and transmembrane protease serine 2, in the placenta across gestation and at the maternal-fetal interface in pregnancies complicated by preterm birth or preeclampsia. Am J Obstet Gynecol 224:298 e291–298 e298. https://doi.org/10.1016/j.ajog.2020.08.055
Blume C, Jackson CL, Spalluto CM, Legebeke J, Nazlamova L, Conforti F et al (2021) A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet 53:205–214. https://doi.org/10.1038/s41588-020-00759-x
Article CAS PubMed Google Scholar
Bosch BJ, Bartelink W, Rottier PJ (2008) Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J Virol 82:8887–8890. https://doi.org/10.1128/JVI.00415-08
Article CAS PubMed PubMed Central Google Scholar
Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809
Article CAS PubMed Google Scholar
Bulfamante G, Chiumello D, Canevini MP, Priori A, Mazzanti M, Centanni S et al (2020) First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol 86:678–679. https://doi.org/10.23736/S0375-9393.20.14772-2
Bull MJ (2020) Down syndrome. N Engl J Med 382:2344–2352. https://doi.org/10.1056/NEJMra1706537
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL et al (2014) Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog 10:e1004502. https://doi.org/10.1371/journal.ppat.1004502
Article CAS PubMed PubMed Central Google Scholar
Burks SM, Rosas-Hernandez H, Alejandro Ramirez-Lee M, Cuevas E, Talpos JC (2021) Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier? Brain Behav Immun 95:7–14. https://doi.org/10.1016/j.bbi.2020.12.031
Article CAS PubMed PubMed Central Google Scholar
Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) Beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888. https://doi.org/10.1016/0896-6273(95)90232-5
Article CAS PubMed Google Scholar
Busciglio J, Pelsman A, Wong C, Pigino G, Yuan M, Mori H et al (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33:677–688. https://doi.org/10.1016/s0896-6273(02)00604-9
Article CAS PubMed Google Scholar
Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in down’s syndrome neurons in vitro. Nature 378:776–779. https://doi.org/10.1038/378776a0
Article CAS PubMed Google Scholar
Busciglio J, Yeh J, Yankner BA (1993) beta-Amyloid neurotoxicity in human cortical culture is not mediated by excitotoxins. J Neurochem 61:1565–1568. https://doi.org/10.1111/j.1471-4159.1993.tb13658.x
Article CAS PubMed Google Scholar
Cama VF, Marin-Prida J, Acosta-Rivero N, Acosta EF, Diaz LO, Casadesus AV et al (2021) The microglial NLRP3 inflammasome is involved in human SARS-CoV-2 cerebral pathogenicity: a report of three post-mortem cases. J Neuroimmunol 361:577728. https://doi.org/10.1016/j.jneuroim.2021.577728
Article CAS PubMed PubMed Central Google Scholar
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S et al (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856–860. https://doi.org/10.1126/science.abd2985
Article CAS PubMed PubMed Central Google Scholar
Carod-Artal FJ, Garcia-Monco JC (2021) Epidemiology, pathophysiology, and classification of the neurological symptoms of post-COVID-19 syndrome. Neurol Perspect 1:S5–S15. https://doi.org/10.1016/j.neurop.2021.07.005
Article CAS PubMed PubMed Central Google Scholar
Casagrande M, Fitzek A, Spitzer M, Puschel K, Glatzel M, Krasemann S et al (2022) Detection of SARS-CoV-2 genomic and subgenomic RNA in retina and optic nerve of patients with COVID-19. Br J Ophthalmol 106:1313–1317. https://doi.org/10.1136/bjophthalmol-2020-318618
Case JB, Rothlauf PW, Chen RE, Liu Z, Zhao H, Kim AS et al (2020) Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2. Cell Host Microbe 28(475–485):e475. https://doi.org/10.1016/j.chom.2020.06.021
Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M et al (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285:10078–10086. https://doi.org/10.1074/jbc.M109.034793
Article CAS PubMed PubMed Central Google Scholar
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH et al (2021) SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol 95:e0086221. https://doi.org/10.1128/JVI.00862-21
Chung H, Green PHR, Wang TC, Kong XF (2021) Interferon-driven immune dysregulation in down syndrome: a review of the evidence. J Inflamm Res 14:5187–5200. https://doi.org/10.2147/JIR.S280953
Article CAS PubMed PubMed Central Google Scholar
Clift AK, Coupland CAC, Keogh RH, Hemingway H, Hippisley-Cox J (2021) COVID-19 mortality risk in down syndrome: results from a cohort study of 8 million adults. Ann Intern Med 174:572–576. https://doi.org/10.7326/M20-4986
Cosentino G, Todisco M, Hota N, Della Porta G, Morbini P, Tassorelli C et al (2021) Neuropathological findings from COVID-19 patients with neurological symptoms argue against a direct brain invasion of SARS-CoV-2: a critical systematic review. Eur J Neurol 28:3856–3865. https://doi.org/10.1111/ene.15045
Comments (0)