Immunohistochemical evaluation of a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease

Andersson E, Lindblom N, Janelidze S, Salvadó G, Gkanatsiou E, Söderberg L et al (2025) Soluble cerebral Aβ protofibrils link Aβ plaque pathology to changes in CSF Aβ42/Aβ40 ratios, neurofilament light and tau in Alzheimer’s disease model mice. Nat Aging 5:366–375. https://doi.org/10.1038/s43587-025-00810-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD et al (2017) QuPath: open source software for digital pathology image analysis. Sci Rep 7:16878. https://doi.org/10.1038/s41598-017-17204-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barthélemy NR, Toth B, Manser PT, Sanabria-Bohórquez S, Teng E, Keeley M et al (2022) Site-specific cerebrospinal fluid tau hyperphosphorylation in response to alzheimer’s disease brain pathology: not all tau phospho-sites are hyperphosphorylated. J Alzheimer’s Dis 85:415–429. https://doi.org/10.3233/JAD-210677

Article  CAS  Google Scholar 

Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804. https://doi.org/10.1056/NEJMoa1202753

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bateman RJ, Smith J, Donohue MC, Delmar P, Abbas R, Salloway S et al (2023) Two phase 3 trials of gantenerumab in early Alzheimer’s disease. N Engl J Med 389:1862–1876. https://doi.org/10.1056/NEJMoa2304430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bateman RJ, Li Y, McDade EM, Llibre-Guerra JJ, Clifford DB, Atri A et al (2025) Safety and efficacy of long-term gantenerumab treatment in dominantly inherited Alzheimer’s disease: an open-label extension of the phase 2/3 multicentre, randomised, double-blind, placebo-controlled platform DIAN-TU trial. Lancet Neurol 24:316–330. https://doi.org/10.1016/S1474-4422(25)00024-9

Article  CAS  PubMed  Google Scholar 

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (Methodol) 57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

Article  Google Scholar 

Benzinger TLS, Blazey T, Jack CR, Koeppe RA, Su Y, Xiong C et al (2013) Regional variability of imaging biomarkers in autosomal dominant Alzheimer’s disease. Proc Natl Acad Sci U S A 110:E4502-4509. https://doi.org/10.1073/pnas.1317918110

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beyreuther K, Masters CL (1991) Amyloid precursor protein (APP) and beta A4 amyloid in the etiology of Alzheimer’s disease: precursor-product relationships in the derangement of neuronal function. Brain Pathol 1:241–251. https://doi.org/10.1111/j.1750-3639.1991.tb00667.x

Article  CAS  PubMed  Google Scholar 

Biel D, Brendel M, Rubinski A, Buerger K, Janowitz D, Dichgans M et al (2021) Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals. Alzheimers Res Ther 13:137. https://doi.org/10.1186/s13195-021-00880-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259. https://doi.org/10.1007/BF00308809

Article  CAS  PubMed  Google Scholar 

Cairns NJ, Perrin RJ, Franklin EE, Carter D, Vincent B, Xie M et al (2015) Neuropathologic assessment of participants in two multi-center longitudinal observational studies: the Alzheimer disease neuroimaging initiative (ADNI) and the dominantly inherited Alzheimer network (DIAN). Neuropathology 35:390–400. https://doi.org/10.1111/neup.12205

Article  PubMed  PubMed Central  Google Scholar 

Castellani RJ, Shanes ED, McCord M, Reish NJ, Flanagan ME, Mesulam M-M et al (2023) Neuropathology of anti-amyloid-β immunotherapy: a case report. J Alzheimer’s Dis 93:803–813. https://doi.org/10.3233/JAD-221305

Article  Google Scholar 

Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L et al (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353:844–846. https://doi.org/10.1038/353844a0

Article  CAS  PubMed  Google Scholar 

Chen CD, Holden TR, Gordon BA, Franklin EE, Li Y, Coble DW et al (2020) Ante- and postmortem tau in autosomal dominant and late-onset Alzheimer’s disease. Ann Clin Transl Neurol 7:2475–2480. https://doi.org/10.1002/acn3.51237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CD, Joseph-Mathurin N, Sinha N, Zhou A, Li Y, Friedrichsen K et al (2021) Comparing amyloid-β plaque burden with antemortem PiB PET in autosomal dominant and late-onset Alzheimer disease. Acta Neuropathol 142:689–706. https://doi.org/10.1007/s00401-021-02342-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen CD, McCullough A, Gordon B, Joseph-Mathurin N, Flores S, McKay NS et al (2023) Longitudinal head-to-head comparison of 11C-PiB and 18F-florbetapir PET in a Phase 2/3 clinical trial of anti-amyloid-β monoclonal antibodies in dominantly inherited Alzheimer’s disease. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-023-06209-0

Article  PubMed  PubMed Central  Google Scholar 

Crehan H, Liu B, Kleinschmidt M, Rahfeld J-U, Le KX, Caldarone BJ et al (2020) Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice. Alzheimer’s Res Therapy 12:12. https://doi.org/10.1186/s13195-019-0579-8

Article  CAS  Google Scholar 

Cummings J (2023) Anti-amyloid monoclonal antibodies are transformative treatments that redefine Alzheimer’s disease therapeutics. Drugs 83:569–576. https://doi.org/10.1007/s40265-023-01858-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M et al (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388:9–21. https://doi.org/10.1056/NEJMoa2212948

Article  PubMed  Google Scholar 

Fagan AM, Mintun MA, Mach RH, Lee S-Y, Dence CS, Shah AR et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512–519. https://doi.org/10.1002/ana.20730

Article  CAS  PubMed  Google Scholar 

Fischl B (2012) FreeSurfer. Neuroimage 62:774–781. https://doi.org/10.1016/j.neuroimage.2012.01.021

Article  PubMed  Google Scholar 

Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890. https://doi.org/10.1016/S0006-291X(84)80190-4

Article  CAS  PubMed  Google Scholar 

Gordon BA, Blazey TM, Christensen J, Dincer A, Flores S, Keefe S et al (2019) Tau PET in autosomal dominant Alzheimer’s disease: relationship with cognition, dementia and other biomarkers. Brain 142:1063–1076. https://doi.org/10.1093/brain/awz019

Article  PubMed  PubMed Central  Google Scholar 

Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388. https://doi.org/10.1016/0165-6147(91)90609-v

Article  CAS  PubMed  Google Scholar 

Hippius H, Neundörfer G (2003) The discovery of Alzheimer’s disease. Dialogues Clin Neurosci 5:101–108

Article  PubMed  PubMed Central  Google Scholar 

Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M et al (2018) Trial of solanezumab for mild dementia due to Alzheimer’s disease. N Engl J Med 378:321–330. https://doi.org/10.1056/NEJMoa1705971

Article  CAS  PubMed 

Comments (0)

No login
gif