Mannella, C. A. et al. Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52, 93–100 (2001).
Article CAS PubMed Google Scholar
Mannella, C. A. Consequences of folding the mitochondrial inner membrane. Front. Physiol. 11, 536 (2020).
Article PubMed PubMed Central Google Scholar
Afzal, N., Lederer, W. J., Jafri, M. S. & Mannella, C. A. Effect of crista morphology on mitochondrial ATP output: a computational study. Curr. Res. Physiol. 4, 163–176 (2021).
Article CAS PubMed PubMed Central Google Scholar
Vogel, F., Bornhövd, C., Neupert, W. & Reichert, A. S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237–247 (2006).
Article CAS PubMed PubMed Central Google Scholar
Wurm, C. A. & Jakobs, S. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett. 580, 5628–5634 (2006).
Article CAS PubMed Google Scholar
Stoldt, S. et al. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20, 528–534 (2018).
Article CAS PubMed Google Scholar
Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549 (2019).
Mukherjee, I., Ghosh, M. & Meinecke, M. MICOS and the mitochondrial inner membrane morphology — when things get out of shape. FEBS Lett. 595, 1159–1183 (2021).
Article CAS PubMed Google Scholar
Nesci, S. A lethal channel between the ATP synthase monomers. Trends Biochem. Sci. 43, 311–313 (2018).
Article CAS PubMed Google Scholar
Jakubke, C. et al. Cristae-dependent quality control of the mitochondrial genome. Sci. Adv. 7, eabi8886 (2021).
Article CAS PubMed PubMed Central Google Scholar
Itoh, K., Tamura, Y., Iijima, M. & Sesaki, H. Effects of Fcj1–Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol. Biol. Cell 24, 1842–1851 (2013).
Article CAS PubMed PubMed Central Google Scholar
Merkwirth, C. et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes. Dev. 22, 476–488 (2008).
Article CAS PubMed PubMed Central Google Scholar
Osman, C., Merkwirth, C. & Langer, T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J. Cell Sci. 122, 3823–3830 (2009).
Article CAS PubMed Google Scholar
Wai, T. et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 17, 1844–1856 (2016).
Article CAS PubMed PubMed Central Google Scholar
Arguello, T. et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 37, 110139 (2021).
Article CAS PubMed PubMed Central Google Scholar
Patron, M. et al. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J. 41, e110476 (2022).
Article CAS PubMed PubMed Central Google Scholar
Lange, F. et al. In situ architecture of the human prohibitin complex. Nat. Cell Biol. https://doi.org/10.1038/s41556-025-01620-1 (2025).
Article PubMed PubMed Central Google Scholar
Venkatraman, K. et al. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J. 42, e114054 (2023).
Article CAS PubMed PubMed Central Google Scholar
Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 24, 732–748 (2023).
Article CAS PubMed Google Scholar
Cogliati, S., Enriquez, J. A. & Scorrano, L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41, 261–273 (2016).
Article CAS PubMed Google Scholar
Plecitá-Hlavatá, L. & Ježek, P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int. J. Biochem. Cell Biol. 80, 31–50 (2016).
Kaye, S. D., Goyani, S. & Tomar, D. MICU1’s calcium sensing beyond mitochondrial calcium uptake. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119714 (2024).
Article CAS PubMed Google Scholar
Dlasková, A. et al. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta Bioenerg. 1860, 659–678 (2019).
Ježek, P. et al. Mitochondrial physiology of cellular redox regulations. Physiol. Res. 73, S217–s242 (2024).
Article PubMed PubMed Central Google Scholar
Hinton, A. Jr. et al. Mitochondrial structure and function in human heart failure. Circ. Res. 135, 372–396 (2024).
Article CAS PubMed PubMed Central Google Scholar
Jenkins, B. C. et al. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem. Sci. 49, 346–360 (2024).
Article CAS PubMed PubMed Central Google Scholar
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Article CAS PubMed PubMed Central Google Scholar
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Article CAS PubMed PubMed Central Google Scholar
Perkins, G. A. et al. Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J. Bioenerg. Biomembr. 30, 431–442 (1998).
Article CAS PubMed Google Scholar
Frey, T. G. & Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci. 25, 319–324 (2000).
Article CAS PubMed Google Scholar
Renken, C. et al. A thermodynamic model describing the nature of the crista junction: a structural motif in the mitochondrion. J. Struct. Biol. 138, 137–144 (2002).
Comments (0)