Molecular machineries shaping the mitochondrial inner membrane

Mannella, C. A. et al. Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52, 93–100 (2001).

Article  CAS  PubMed  Google Scholar 

Mannella, C. A. Consequences of folding the mitochondrial inner membrane. Front. Physiol. 11, 536 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Afzal, N., Lederer, W. J., Jafri, M. S. & Mannella, C. A. Effect of crista morphology on mitochondrial ATP output: a computational study. Curr. Res. Physiol. 4, 163–176 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vogel, F., Bornhövd, C., Neupert, W. & Reichert, A. S. Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237–247 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wurm, C. A. & Jakobs, S. Differential protein distributions define two sub-compartments of the mitochondrial inner membrane in yeast. FEBS Lett. 580, 5628–5634 (2006).

Article  CAS  PubMed  Google Scholar 

Stoldt, S. et al. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat. Cell Biol. 20, 528–534 (2018).

Article  CAS  PubMed  Google Scholar 

Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549 (2019).

Article  PubMed  Google Scholar 

Mukherjee, I., Ghosh, M. & Meinecke, M. MICOS and the mitochondrial inner membrane morphology — when things get out of shape. FEBS Lett. 595, 1159–1183 (2021).

Article  CAS  PubMed  Google Scholar 

Nesci, S. A lethal channel between the ATP synthase monomers. Trends Biochem. Sci. 43, 311–313 (2018).

Article  CAS  PubMed  Google Scholar 

Jakubke, C. et al. Cristae-dependent quality control of the mitochondrial genome. Sci. Adv. 7, eabi8886 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Itoh, K., Tamura, Y., Iijima, M. & Sesaki, H. Effects of Fcj1–Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol. Biol. Cell 24, 1842–1851 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Merkwirth, C. et al. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes. Dev. 22, 476–488 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osman, C., Merkwirth, C. & Langer, T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J. Cell Sci. 122, 3823–3830 (2009).

Article  CAS  PubMed  Google Scholar 

Wai, T. et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 17, 1844–1856 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arguello, T. et al. ATAD3A has a scaffolding role regulating mitochondria inner membrane structure and protein assembly. Cell Rep. 37, 110139 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patron, M. et al. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J. 41, e110476 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lange, F. et al. In situ architecture of the human prohibitin complex. Nat. Cell Biol. https://doi.org/10.1038/s41556-025-01620-1 (2025).

Article  PubMed  PubMed Central  Google Scholar 

Venkatraman, K. et al. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J. 42, e114054 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Czabotar, P. E. & Garcia-Saez, A. J. Mechanisms of BCL-2 family proteins in mitochondrial apoptosis. Nat. Rev. Mol. Cell Biol. 24, 732–748 (2023).

Article  CAS  PubMed  Google Scholar 

Cogliati, S., Enriquez, J. A. & Scorrano, L. Mitochondrial cristae: where beauty meets functionality. Trends Biochem. Sci. 41, 261–273 (2016).

Article  CAS  PubMed  Google Scholar 

Plecitá-Hlavatá, L. & Ježek, P. Integration of superoxide formation and cristae morphology for mitochondrial redox signaling. Int. J. Biochem. Cell Biol. 80, 31–50 (2016).

Article  PubMed  Google Scholar 

Kaye, S. D., Goyani, S. & Tomar, D. MICU1’s calcium sensing beyond mitochondrial calcium uptake. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119714 (2024).

Article  CAS  PubMed  Google Scholar 

Dlasková, A. et al. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta Bioenerg. 1860, 659–678 (2019).

Article  PubMed  Google Scholar 

Ježek, P. et al. Mitochondrial physiology of cellular redox regulations. Physiol. Res. 73, S217–s242 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Hinton, A. Jr. et al. Mitochondrial structure and function in human heart failure. Circ. Res. 135, 372–396 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jenkins, B. C. et al. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem. Sci. 49, 346–360 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perkins, G. A. et al. Electron tomography of mitochondria from brown adipocytes reveals crista junctions. J. Bioenerg. Biomembr. 30, 431–442 (1998).

Article  CAS  PubMed  Google Scholar 

Frey, T. G. & Mannella, C. A. The internal structure of mitochondria. Trends Biochem. Sci. 25, 319–324 (2000).

Article  CAS  PubMed  Google Scholar 

Renken, C. et al. A thermodynamic model describing the nature of the crista junction: a structural motif in the mitochondrion. J. Struct. Biol. 138, 137–144 (2002).

Article  CAS 

Comments (0)

No login
gif