Darwin, C. & Darwin, F. E. The Power of Movement in Plants (D. Appleton, 1880).
Thimann, K. V. & Koepfli, J. B. Identity of the growth-promoting and root-forming substances of plants. Nature 135, 101–102 (1935).
Kögl, F., Erxleben, H. & Haagen-Smit, A. J. Über die Isolierung der Auxine a und b aus pflanzlichen Materialien. IX. Mitteilung. Physiol. Chem. 243, 209–226 (1934).
Carrillo-Carrasco, V. P., Hernandez-Garcia, J., Mutte, S. K. & Weijers, D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J. 42, e113018 (2023).
Article CAS PubMed PubMed Central Google Scholar
Schmidt, V. et al. Phytohormone profiling in an evolutionary framework. Nat. Commun. 15, 3875 (2024).
Article CAS PubMed PubMed Central Google Scholar
Dubrovsky, J. G. et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl Acad. Sci. USA 105, 8790–8794 (2008).
Article CAS PubMed PubMed Central Google Scholar
Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).
Article CAS PubMed Google Scholar
Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).
Article CAS PubMed Google Scholar
Leyser, O. Auxin signaling. Plant Physiol. 176, 465–479 (2018).
Article CAS PubMed Google Scholar
de Roij, M., Borst, J. W. & Weijers, D. Protein degradation in auxin response. Plant Cell 36, 3025–3035 (2024).
Article PubMed PubMed Central Google Scholar
Lavy, M. & Estelle, M. Mechanisms of auxin signaling. Development 143, 3226–3229 (2016).
Article CAS PubMed PubMed Central Google Scholar
Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P. & Fendrych, M. No time for transcription-rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a039891 (2021).
Ludwig-Müller, J., Jülke, S., Bierfreund, N. M., Decker, E. L. & Reski, R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. N. Phytol. 181, 323–338 (2009).
Eklund, D. M. et al. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27, 1650–1669 (2015).
Article CAS PubMed PubMed Central Google Scholar
Kato, H. et al. Design principles of a minimal auxin response system. Nat. Plants 6, 473–482 (2020).
Article CAS PubMed Google Scholar
Tang, H. et al. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Commun. 5, 100669 (2024).
Article CAS PubMed Google Scholar
Fisher, T. J., Flores-Sandoval, E., Alvarez, J. P. & Bowman, J. L. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. N. Phytol. 238, 1498–1515 (2023).
Kaneko, S. et al. An evolutionarily primitive and distinct auxin metabolism in the lycophyte Selaginella moellendorffii. Plant Cell Physiol. 61, 1724–1732 (2020).
Article CAS PubMed Google Scholar
Prigge, M. J., Lavy, M., Ashton, N. W. & Estelle, M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20, 1907–1912 (2010).
Article CAS PubMed Google Scholar
Skokan, R. et al. PIN-driven auxin transport emerged early in streptophyte evolution. Nat. Plants 5, 1114–1119 (2019).
Article CAS PubMed Google Scholar
Kuhn, A. et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 187, 130–148 (2024).
Article CAS PubMed PubMed Central Google Scholar
Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).
Article CAS PubMed Google Scholar
Mashiguchi, K. et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 18512–18517 (2011).
Article CAS PubMed PubMed Central Google Scholar
Won, C. et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 18518–18523 (2011).
Article CAS PubMed PubMed Central Google Scholar
Tivendale, N. D. et al. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 159, 1055–1063 (2012).
Article CAS PubMed PubMed Central Google Scholar
Casanova-Saez, R., Mateo-Bonmati, E. & Ljung, K. Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a039867 (2021).
Sugawara, S. et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 56, 1641–1654 (2015).
Article CAS PubMed PubMed Central Google Scholar
Wang, B. et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 4821–4826 (2015).
Article CAS PubMed PubMed Central Google Scholar
Frick, E. M. & Strader, L. C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 69, 169–177 (2018).
Article CAS PubMed Google Scholar
Zhao, Y. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu. Rev. Plant Biol. 69, 417–435 (2018).
Article CAS PubMed Google Scholar
Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 1790–1799 (2006).
Article CAS PubMed PubMed Central Google Scholar
Brumos, J. et al. Local auxin biosynthesis is a key regulator of plant development. Dev. Cell 47, 306–318 (2018).
Article CAS PubMed Google Scholar
Krahmer, J. & Fankhauser, C. Environmental control of hypocotyl elongation. Annu. Rev. Plant Biol. 75, 489–519 (2024).
Article CAS PubMed Google Scholar
Ursache, R. et al. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development 141, 1250–1259 (2014).
Comments (0)