Mechanisms of auxin action in plant growth and development

Darwin, C. & Darwin, F. E. The Power of Movement in Plants (D. Appleton, 1880).

Thimann, K. V. & Koepfli, J. B. Identity of the growth-promoting and root-forming substances of plants. Nature 135, 101–102 (1935).

Article  CAS  Google Scholar 

Kögl, F., Erxleben, H. & Haagen-Smit, A. J. Über die Isolierung der Auxine a und b aus pflanzlichen Materialien. IX. Mitteilung. Physiol. Chem. 243, 209–226 (1934).

Article  Google Scholar 

Carrillo-Carrasco, V. P., Hernandez-Garcia, J., Mutte, S. K. & Weijers, D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J. 42, e113018 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, V. et al. Phytohormone profiling in an evolutionary framework. Nat. Commun. 15, 3875 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubrovsky, J. G. et al. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc. Natl Acad. Sci. USA 105, 8790–8794 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).

Article  CAS  PubMed  Google Scholar 

Vanneste, S. & Friml, J. Auxin: a trigger for change in plant development. Cell 136, 1005–1016 (2009).

Article  CAS  PubMed  Google Scholar 

Leyser, O. Auxin signaling. Plant Physiol. 176, 465–479 (2018).

Article  CAS  PubMed  Google Scholar 

de Roij, M., Borst, J. W. & Weijers, D. Protein degradation in auxin response. Plant Cell 36, 3025–3035 (2024).

Article  PubMed  PubMed Central  Google Scholar 

Lavy, M. & Estelle, M. Mechanisms of auxin signaling. Development 143, 3226–3229 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dubey, S. M., Serre, N. B. C., Oulehlová, D., Vittal, P. & Fendrych, M. No time for transcription-rapid auxin responses in plants. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a039891 (2021).

Ludwig-Müller, J., Jülke, S., Bierfreund, N. M., Decker, E. L. & Reski, R. Moss (Physcomitrella patens) GH3 proteins act in auxin homeostasis. N. Phytol. 181, 323–338 (2009).

Article  Google Scholar 

Eklund, D. M. et al. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27, 1650–1669 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kato, H. et al. Design principles of a minimal auxin response system. Nat. Plants 6, 473–482 (2020).

Article  CAS  PubMed  Google Scholar 

Tang, H. et al. Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution. Plant Commun. 5, 100669 (2024).

Article  CAS  PubMed  Google Scholar 

Fisher, T. J., Flores-Sandoval, E., Alvarez, J. P. & Bowman, J. L. PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha. N. Phytol. 238, 1498–1515 (2023).

Article  CAS  Google Scholar 

Kaneko, S. et al. An evolutionarily primitive and distinct auxin metabolism in the lycophyte Selaginella moellendorffii. Plant Cell Physiol. 61, 1724–1732 (2020).

Article  CAS  PubMed  Google Scholar 

Prigge, M. J., Lavy, M., Ashton, N. W. & Estelle, M. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr. Biol. 20, 1907–1912 (2010).

Article  CAS  PubMed  Google Scholar 

Skokan, R. et al. PIN-driven auxin transport emerged early in streptophyte evolution. Nat. Plants 5, 1114–1119 (2019).

Article  CAS  PubMed  Google Scholar 

Kuhn, A. et al. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 187, 130–148 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stepanova, A. N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

Article  CAS  PubMed  Google Scholar 

Mashiguchi, K. et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 18512–18517 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Won, C. et al. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc. Natl Acad. Sci. USA 108, 18518–18523 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tivendale, N. D. et al. Biosynthesis of the halogenated auxin, 4-chloroindole-3-acetic acid. Plant Physiol. 159, 1055–1063 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Casanova-Saez, R., Mateo-Bonmati, E. & Ljung, K. Auxin metabolism in plants. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a039867 (2021).

Sugawara, S. et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 56, 1641–1654 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, B. et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc. Natl Acad. Sci. USA 112, 4821–4826 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Frick, E. M. & Strader, L. C. Roles for IBA-derived auxin in plant development. J. Exp. Bot. 69, 169–177 (2018).

Article  CAS  PubMed  Google Scholar 

Zhao, Y. Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu. Rev. Plant Biol. 69, 417–435 (2018).

Article  CAS  PubMed  Google Scholar 

Cheng, Y., Dai, X. & Zhao, Y. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 20, 1790–1799 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brumos, J. et al. Local auxin biosynthesis is a key regulator of plant development. Dev. Cell 47, 306–318 (2018).

Article  CAS  PubMed  Google Scholar 

Krahmer, J. & Fankhauser, C. Environmental control of hypocotyl elongation. Annu. Rev. Plant Biol. 75, 489–519 (2024).

Article  CAS  PubMed  Google Scholar 

Ursache, R. et al. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development 141, 1250–1259 (2014).

Article  CAS  PubMed 

Comments (0)

No login
gif