Kierzek, E. et al. The contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Res. 42, 3492–3501 (2014).
Article CAS PubMed Google Scholar
Li, X. Y., Ma, S. Q. & Yi, C. Q. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33, 108–116 (2016).
Article CAS PubMed Google Scholar
Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).
Article CAS PubMed PubMed Central Google Scholar
Roundtree, I. A., Evans, M. E., Pan, T. & He, C. Dynamic RNA modifications in gene expression regulation. Cell 169, 1187–1200 (2017).
Article CAS PubMed PubMed Central Google Scholar
Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015).
Article CAS PubMed Google Scholar
Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).
Article CAS PubMed PubMed Central Google Scholar
Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143-+ (2014).
Article CAS PubMed PubMed Central Google Scholar
Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).
Article CAS PubMed Google Scholar
Penzo, M. et al. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB J. 29, 3472–3482 (2015).
Article CAS PubMed Google Scholar
Barozzi, C. et al. Alterations of ribosomal RNA pseudouridylation in human breast cancer. Nar. Cancer 5, zcad026 (2023).
Article PubMed PubMed Central Google Scholar
Keszthelyi, T. M. & Tory, K. The importance of pseudouridylation: human disorders related to the fifth nucleoside. Biol. Futur. 74, 3–15 (2023).
Bykhovskaya, Y., Casas, K., Mengesha, E., Inbal, A. & Fischel-Ghodsian, N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA). Am. J. Hum. Genet. 74, 1303–1308 (2004).
Article CAS PubMed PubMed Central Google Scholar
Shaheen, R. et al. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition. Hum. Genet. 135, 707–713 (2016).
Article CAS PubMed PubMed Central Google Scholar
Shaheen, R. et al. PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum. Genet. 138, 231–239 (2019).
Article CAS PubMed PubMed Central Google Scholar
Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 17, 365–372 (2016).
Article CAS PubMed Google Scholar
Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 552–559 (2019).
Article CAS PubMed Google Scholar
Wang, M. K., Gao, C. C. & Yang, Y. G. Emerging roles of RNA methylation in development. Acc. Chem. Res. 56, 3417–3427 (2023).
Article CAS PubMed Google Scholar
Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).
Article CAS PubMed Google Scholar
Shi, H., Chai, P., Jia, R. & Fan, X. Novel insight into the regulatory roles of diverse RNA modifications: re-defining the bridge between transcription and translation. Mol. Cancer 19, 78 (2020).
Article CAS PubMed PubMed Central Google Scholar
Liu, C. et al. Absolute quantification of single-base m6A methylation in the mammalian transcriptome using GLORI. Nat. Biotechnol. 41, 355–366 (2023).
Article CAS PubMed Google Scholar
Karijolich, J., Yi, C. & Yu, Y. T. Transcriptome-wide dynamics of RNA pseudouridylation. Nat. Rev. Mol. Cell Biol. 16, 581–585 (2015).
Article CAS PubMed PubMed Central Google Scholar
Li, X., Xiong, X. & Yi, C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat. Methods 14, 23–31 (2016).
Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).
Article CAS PubMed PubMed Central Google Scholar
Song, J. et al. CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons. Mol. Cell 83, 139–155 e139 (2023).
Article CAS PubMed Google Scholar
Adachi, H. et al. Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes. Mol. Cell 83, 637–651 e639 (2023).
Article CAS PubMed PubMed Central Google Scholar
Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344–354 (2023).
Article CAS PubMed Google Scholar
Svidritskiy, E., Madireddy, R. & Korostelev, A. A. Structural basis for translation termination on a pseudouridylated stop codon. J. Mol. Biol. 428, 2228–2236 (2016).
Article CAS PubMed PubMed Central Google Scholar
Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).
Article CAS PubMed PubMed Central Google Scholar
Luo, N. et al. Near-cognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons. Nat. Biotechnol. 43, 114–123 (2024).
Liu, J. et al. RNA codon expansion via programmable pseudouridine editing and decoding. Nature https://doi.org/10.1038/s41586-025-09165-x (2025).
Hoernes, T. P. et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 44, 852–862 (2016).
Article CAS PubMed Google Scholar
Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).
Comments (0)