Apweiler, R. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).
Article CAS PubMed Google Scholar
Gagneux, P., Hennet, T. & Varki, A. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 7 (2022).
O’Connor, S. E. & Imperiali, B. A molecular basis for glycosylation-induced conformational switching. Chem. Biol. 5, 427–437 (1998).
Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989 (2003).
Article CAS PubMed Google Scholar
Price, J. L. et al. N‐glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98, 195–211 (2012).
Article CAS PubMed PubMed Central Google Scholar
Hebert, D. N., Lamriben, L., Powers, E. T. & Kelly, J. W. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat. Chem. Biol. 10, 902–910 (2014).
Article CAS PubMed PubMed Central Google Scholar
Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).
Article CAS PubMed Google Scholar
Caramelo, J. J. & Parodi, A. J. A sweet code for glycoprotein folding. FEBS Lett. 589, 3379–3387 (2015).
Article CAS PubMed Google Scholar
Tannous, A., Pisoni, G. B., Hebert, D. N. & Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41, 79–89 (2015).
Article CAS PubMed Google Scholar
Shenkman, M. & Lederkremer, G. Z. Compartmentalization and selective tagging for disposal of misfolded glycoproteins. Trends Biochem. Sci. 44, 827–836 (2019).
Article CAS PubMed Google Scholar
Siekevitz, P. & Palade, G. A cytochemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J. Biophys. Biochem. Cytol. 4, 557–566 (1960).
Ramírez, A. S. & Locher, K. P. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 33, 861–872 (2023).
Article PubMed PubMed Central Google Scholar
Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–634 (1985).
Article CAS PubMed Google Scholar
Cherepanova, N., Shrimal, S. & Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr. Opin. Cell Biol. 41, 57–65 (2016).
Article CAS PubMed PubMed Central Google Scholar
Hebert, D. N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).
Article CAS PubMed Google Scholar
Hebert, D. N., Garman, S. C. & Molinari, M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370 (2005).
Article CAS PubMed Google Scholar
Hebert, D. N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).
Article CAS PubMed Google Scholar
Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92, 537–576 (2012).
Article CAS PubMed Google Scholar
Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).
Article CAS PubMed Google Scholar
Perlmutter, D. H. α1-antitrypsin deficiency: a misfolded secretory protein variant with unique effects on the endoplasmic reticulum. ER Stress Dis. 3, 63–72 (2016).
Ng, B. G. & Freeze, H. H. Perspectives on glycosylation and its congenital disorders. Trends Genet. 34, 466–476 (2018).
Article CAS PubMed PubMed Central Google Scholar
Shrimal, S., Cherepanova, N. A. & Gilmore, R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin. Cell Dev. Biol. 41, 71–78 (2015).
Article CAS PubMed Google Scholar
Ramírez, A. S., Kowal, J. & Locher, K. P. Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science 366, 1372–1375 (2019).
Kelleher, D. J., Karaoglu, D., Mandon, E. C. & Gilmore, R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell 12, 101–111 (2003).
Article CAS PubMed Google Scholar
Shrimal, S. & Gilmore, R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 29, 288–297 (2019).
Article CAS PubMed Google Scholar
Ruiz-Canada, C., Kelleher, D. J. & Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009).
Article CAS PubMed PubMed Central Google Scholar
Shrimal, S., Cherepanova, N. A., Mandon, E. C., Venev, S. V. & Gilmore, R. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Mol. Biol. Cell 30, 2626–2638 (2019).
Article CAS PubMed PubMed Central Google Scholar
Cherepanova, N. A., Shrimal, S. & Gilmore, R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J. Cell Biol. 206, 525–539 (2014).
Article CAS PubMed PubMed Central Google Scholar
Horak, P. et al. TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci. Rep. 4, 3739 (2014).
Article PubMed PubMed Central Google Scholar
Mohorko, E. et al. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 22, 590–601 (2014).
Article CAS PubMed Google Scholar
Van Lith, M. et al. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J. Cell Sci. 134, jcs259340 (2021).
Article PubMed PubMed Central Google Scholar
Schulz, B. L. et al. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc. Natl Acad. Sci. USA 106, 11061–11066 (2009).
Comments (0)