N-glycan-dependent protein maturation and quality control in the ER

Apweiler, R. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta 1473, 4–8 (1999).

Article  CAS  PubMed  Google Scholar 

Gagneux, P., Hennet, T. & Varki, A. In Essentials of Glycobiology 4th edn (eds Varki, A. et al.) Ch. 7 (2022).

O’Connor, S. E. & Imperiali, B. A molecular basis for glycosylation-induced conformational switching. Chem. Biol. 5, 427–437 (1998).

Article  Google Scholar 

Krapp, S., Mimura, Y., Jefferis, R., Huber, R. & Sondermann, P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J. Mol. Biol. 325, 979–989 (2003).

Article  CAS  PubMed  Google Scholar 

Price, J. L. et al. N‐glycosylation of enhanced aromatic sequons to increase glycoprotein stability. Biopolymers 98, 195–211 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hebert, D. N., Lamriben, L., Powers, E. T. & Kelly, J. W. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis. Nat. Chem. Biol. 10, 902–910 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

Article  CAS  PubMed  Google Scholar 

Caramelo, J. J. & Parodi, A. J. A sweet code for glycoprotein folding. FEBS Lett. 589, 3379–3387 (2015).

Article  CAS  PubMed  Google Scholar 

Tannous, A., Pisoni, G. B., Hebert, D. N. & Molinari, M. N-linked sugar-regulated protein folding and quality control in the ER. Semin. Cell Dev. Biol. 41, 79–89 (2015).

Article  CAS  PubMed  Google Scholar 

Shenkman, M. & Lederkremer, G. Z. Compartmentalization and selective tagging for disposal of misfolded glycoproteins. Trends Biochem. Sci. 44, 827–836 (2019).

Article  CAS  PubMed  Google Scholar 

Siekevitz, P. & Palade, G. A cytochemical study on the pancreas of the guinea pig. III. In vivo incorporation of leucine-1-C14 into the proteins of cell fractions. J. Biophys. Biochem. Cytol. 4, 557–566 (1960).

Article  Google Scholar 

Ramírez, A. S. & Locher, K. P. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 33, 861–872 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Kornfeld, R. & Kornfeld, S. Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–634 (1985).

Article  CAS  PubMed  Google Scholar 

Cherepanova, N., Shrimal, S. & Gilmore, R. N-linked glycosylation and homeostasis of the endoplasmic reticulum. Curr. Opin. Cell Biol. 41, 57–65 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hebert, D. N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

Article  CAS  PubMed  Google Scholar 

Hebert, D. N., Garman, S. C. & Molinari, M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370 (2005).

Article  CAS  PubMed  Google Scholar 

Hebert, D. N. & Molinari, M. In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377–1408 (2007).

Article  CAS  PubMed  Google Scholar 

Guerriero, C. J. & Brodsky, J. L. The delicate balance between secreted protein folding and endoplasmic reticulum-associated degradation in human physiology. Physiol. Rev. 92, 537–576 (2012).

Article  CAS  PubMed  Google Scholar 

Hidvegi, T. et al. An autophagy-enhancing drug promotes degradation of mutant α1-antitrypsin Z and reduces hepatic fibrosis. Science 329, 229–232 (2010).

Article  CAS  PubMed  Google Scholar 

Perlmutter, D. H. α1-antitrypsin deficiency: a misfolded secretory protein variant with unique effects on the endoplasmic reticulum. ER Stress Dis. 3, 63–72 (2016).

CAS  Google Scholar 

Ng, B. G. & Freeze, H. H. Perspectives on glycosylation and its congenital disorders. Trends Genet. 34, 466–476 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrimal, S., Cherepanova, N. A. & Gilmore, R. Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin. Cell Dev. Biol. 41, 71–78 (2015).

Article  CAS  PubMed  Google Scholar 

Ramírez, A. S., Kowal, J. & Locher, K. P. Cryo–electron microscopy structures of human oligosaccharyltransferase complexes OST-A and OST-B. Science 366, 1372–1375 (2019).

Article  PubMed  Google Scholar 

Kelleher, D. J., Karaoglu, D., Mandon, E. C. & Gilmore, R. Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell 12, 101–111 (2003).

Article  CAS  PubMed  Google Scholar 

Shrimal, S. & Gilmore, R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 29, 288–297 (2019).

Article  CAS  PubMed  Google Scholar 

Ruiz-Canada, C., Kelleher, D. J. & Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrimal, S., Cherepanova, N. A., Mandon, E. C., Venev, S. V. & Gilmore, R. Asparagine-linked glycosylation is not directly coupled to protein translocation across the endoplasmic reticulum in Saccharomyces cerevisiae. Mol. Biol. Cell 30, 2626–2638 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cherepanova, N. A., Shrimal, S. & Gilmore, R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. J. Cell Biol. 206, 525–539 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Horak, P. et al. TUSC3 loss alters the ER stress response and accelerates prostate cancer growth in vivo. Sci. Rep. 4, 3739 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Mohorko, E. et al. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 22, 590–601 (2014).

Article  CAS  PubMed  Google Scholar 

Van Lith, M. et al. A cytosolic reductase pathway is required for efficient N-glycosylation of an STT3B-dependent acceptor site. J. Cell Sci. 134, jcs259340 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Schulz, B. L. et al. Oxidoreductase activity of oligosaccharyltransferase subunits Ost3p and Ost6p defines site-specific glycosylation efficiency. Proc. Natl Acad. Sci. USA 106, 11061–11066 (2009).

Article  CAS  PubMed  PubMed Central 

Comments (0)

No login
gif