Sethuram, L., J. Thomas, A. Mukherjee, and N. Chandrasekaran. 2022. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. Nanoscale Adv 4: 2367–2398.
Article CAS PubMed PubMed Central Google Scholar
McDermott, K., M. Fang, A.J.M. Boulton, E. Selvin, and C.W. Hicks. 2023. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care 46: 209–221.
Mahmoudvand, G., A. KarimiRouzbahani, Z.S. Razavi, M. Mahjoor, and H. Afkhami. 2023. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Front Bioeng Biotechnol 11: 1158484.
Article PubMed PubMed Central Google Scholar
McGloin, H., D. Devane, C.D. McIntosh, K. Winkley, and G. Gethin. 2021. Psychological interventions for treating foot ulcers, and preventing their recurrence, in people with diabetes. Cochrane Database Syst Rev 2: CD012835.
Jiang, P., Q. Li, Y. Luo, F. Luo, Q. Che, Z. Lu, S. Yang, Y. Yang, X. Chen, and Y. Cai. 2023. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 14: 1221705.
Khan, M.S., N. Jahan, R. Khatoon, F.M. Ansari, and S. Ahmad. 2024. An Update on Diabetic Foot Ulcer and Its Management Modalities. Indian J Microbiol 64: 1401–1415.
Rai, V., R. Moellmer, and D.K. Agrawal. 2022. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells 11: 2287.
Article CAS PubMed PubMed Central Google Scholar
Song, J., A. Liu, B. Liu, W. Huang, Z. Jiang, X. Bai, L. Hu, S. Zheng, S. Guo, J. Wu, et al. 2022. Natural Biologics Accelerate Healing of Diabetic Foot Ulcers by Regulating Oxidative Stress. Front Biosci (Landmark Ed) 27: 285.
Article CAS PubMed Google Scholar
Kaur, P., S. Kotru, S. Singh, and A. Munshi. 2022. Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Molecular Neurobiology 59: 1836–1849.
Article CAS PubMed Google Scholar
Wu, Q.J., T.N. Zhang, H.H. Chen, X.F. Yu, J.L. Lv, Y.Y. Liu, Y.S. Liu, G. Zheng, J.Q. Zhao, Y.F. Wei, et al. 2022. The sirtuin family in health and disease. Signal Transduction and Targeted Therapy 7: 402.
Article CAS PubMed PubMed Central Google Scholar
Guo, Z., P. Li, J. Ge, and H. Li. 2022. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging & Disease 13: 1787–1822.
Tasselli, L., W. Zheng, and K.F. Chua. 2017. SIRT6: Novel Mechanisms and Links to Aging and Disease. Trends in Endocrinology and Metabolism 28: 168–185.
Article CAS PubMed Google Scholar
Mostoslavsky, R., K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, P. Liu, G. Mostoslavsky, S. Franco, M.M. Murphy, et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124: 315–329.
Article CAS PubMed Google Scholar
Kanfi, Y., S. Naiman, G. Amir, V. Peshti, G. Zinman, L. Nahum, Z. Bar-Joseph, and H.Y. Cohen. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483: 218–221.
Article CAS PubMed Google Scholar
Kuang, J., L. Chen, Q. Tang, J. Zhang, Y. Li, and J. He. 2018. The Role of Sirt6 in Obesity and Diabetes. Frontiers in Physiology 9: 135.
Article PubMed PubMed Central Google Scholar
Ren, S.C., X. Chen, H. Gong, H. Wang, C. Wu, P.H. Li, X.F. Chen, J.H. Qu, and X. Tang. 2022. SIRT6 in Vascular Diseases, from Bench to Bedside. Aging & Disease 13: 1015–1029.
Chen, Z., W. Liang, J. Hu, Z. Zhu, J. Feng, Y. Ma, Q. Yang, and G. Ding. 2022. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Proliferation 55: e13296.
Article CAS PubMed PubMed Central Google Scholar
Li, X., L. Liu, W. Jiang, M. Liu, Y. Wang, H. Ma, N. Mu, and H. Wang. 2022. SIRT6 Protects Against Myocardial Ischemia-Reperfusion Injury by Attenuating Aging-Related CHMP2B Accumulation. Journal of Cardiovascular Translational Research 15: 740–753.
Wang, Z., Q. Wu, H. Wang, Y. Gao, K. Nie, Y. Tang, H. Su, M. Hu, J. Gong, K. Fang, et al. 2022. Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine 104: 154276.
Article CAS PubMed Google Scholar
Luan, Y., Y. Luo, and M. Deng. 2023. New advances in Nrf2-mediated analgesic drugs. Phytomedicine 110: 154598.
Article CAS PubMed Google Scholar
Patel, S., H. Khan, and A. Majumdar. 2022. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metabolic Brain Disease 37: 2181–2195.
Article CAS PubMed Google Scholar
Gao, Y., W. Liu, X. Su, X. Li, F. Yu, and N. Zhang. 2022. The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. Oxidative Medicine and Cellular Longevity 2022: 3959390.
Article PubMed PubMed Central Google Scholar
Long, M., M. Rojo de la Vega, Q. Wen, M. Bharara, T. Jiang, R. Zhang, S. Zhou, P.K. Wong, G.T. Wondrak, H. Zheng, et al. 2016. An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes 65: 780–793.
Article CAS PubMed Google Scholar
Liang, Z.H., S.S. Lin, N.F. Pan, G.Y. Zhong, Z.Y. Qiu, S.J. Kuang, Z.H. Lin, Z. Zhang, and Y.C. Pan. 2023. UCMSCs-derived exosomal circHIPK3 promotes ulcer wound angiogenesis of diabetes mellitus via miR-20b-5p/Nrf2/VEGFA axis. Diabetic Medicine 40: e14968.
Article CAS PubMed Google Scholar
Liu, Y., J. Mo, F. Liang, S. Jiang, J. Xiong, X. Meng, and Z. Mo. 2023. Pien-tze-huang promotes wound healing in streptozotocin-induced diabetes models associated with improving oxidative stress via the Nrf2/ARE pathway. Frontiers in Pharmacology 14: 1062664.
Article CAS PubMed PubMed Central Google Scholar
Chen, J., X. Li, H. Liu, D. Zhong, K. Yin, Y. Li, L. Zhu, C. Xu, M. Li, and C. Wang. 2022. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis. Diabet Med 40: e15031.
Sun, X., X. Wang, Z. Zhao, J. Chen, C. Li, and G. Zhao. 2020. Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway. Acta Histochemica 122: 151649.
Article CAS PubMed Google Scholar
Ma, P., H. Shao, D. Xu, and X. Qi. 2025. Sirt6 regulates the Notch signaling pathway and mediates autophagy and regulates podocyte damage in diabetic nephropathy. Journal of Bioenergetics and Biomembranes 57: 49–55.
Article CAS PubMed Google Scholar
Wu, T., Y. Qu, S. Xu, Y. Wang, X. Liu, and D. Ma. 2023. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. The FASEB Journal 37: e23099.
Article CAS PubMed Google Scholar
Li, B., Z. Xin, S. Gao, Y. Li, S. Guo, Y. Fu, R. Xu, D. Wang, J. Cheng, L. Liu, et al. 2023. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis. Theranostics 13: 231–249.
Article CAS PubMed PubMed Central Google Scholar
Zorrilla-Zubilete, M.A., A. Yeste, F.J. Quintana, D. Toiber, R. Mostoslavsky, and D.M. Silberman. 2018. Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6. Journal of Neurochemistry 144: 128–138.
Article CAS PubMed Google Scholar
Peng, D., Q. Xia, L. Guan, H.Y. Li, L.J. Qiao, Y.B. Chen, Y.F. Cai, Q. Wang, and S.J. Zhang. 2022. Carnosine Improves Cognitive Impairment Through Promoting SIRT6 Expression and Inhibiting Endoplasmic Reticulum Stress in a Diabetic Encephalopathy Model. Rejuvenation Research 25: 79–88.
Comments (0)