SIRT6 Overexpression Enhances Diabetic Foot Ulcer Healing via Nrf2 Pathway Activation

Sethuram, L., J. Thomas, A. Mukherjee, and N. Chandrasekaran. 2022. A review on contemporary nanomaterial-based therapeutics for the treatment of diabetic foot ulcers (DFUs) with special reference to the Indian scenario. Nanoscale Adv 4: 2367–2398.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDermott, K., M. Fang, A.J.M. Boulton, E. Selvin, and C.W. Hicks. 2023. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care 46: 209–221.

Article  PubMed  Google Scholar 

Mahmoudvand, G., A. KarimiRouzbahani, Z.S. Razavi, M. Mahjoor, and H. Afkhami. 2023. Mesenchymal stem cell therapy for non-healing diabetic foot ulcer infection: New insight. Front Bioeng Biotechnol 11: 1158484.

Article  PubMed  PubMed Central  Google Scholar 

McGloin, H., D. Devane, C.D. McIntosh, K. Winkley, and G. Gethin. 2021. Psychological interventions for treating foot ulcers, and preventing their recurrence, in people with diabetes. Cochrane Database Syst Rev 2: CD012835.

PubMed  Google Scholar 

Jiang, P., Q. Li, Y. Luo, F. Luo, Q. Che, Z. Lu, S. Yang, Y. Yang, X. Chen, and Y. Cai. 2023. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 14: 1221705.

Article  PubMed  Google Scholar 

Khan, M.S., N. Jahan, R. Khatoon, F.M. Ansari, and S. Ahmad. 2024. An Update on Diabetic Foot Ulcer and Its Management Modalities. Indian J Microbiol 64: 1401–1415.

Article  PubMed  Google Scholar 

Rai, V., R. Moellmer, and D.K. Agrawal. 2022. Stem Cells and Angiogenesis: Implications and Limitations in Enhancing Chronic Diabetic Foot Ulcer Healing. Cells 11: 2287.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song, J., A. Liu, B. Liu, W. Huang, Z. Jiang, X. Bai, L. Hu, S. Zheng, S. Guo, J. Wu, et al. 2022. Natural Biologics Accelerate Healing of Diabetic Foot Ulcers by Regulating Oxidative Stress. Front Biosci (Landmark Ed) 27: 285.

Article  CAS  PubMed  Google Scholar 

Kaur, P., S. Kotru, S. Singh, and A. Munshi. 2022. Role of miRNAs in diabetic neuropathy: Mechanisms and possible interventions. Molecular Neurobiology 59: 1836–1849.

Article  CAS  PubMed  Google Scholar 

Wu, Q.J., T.N. Zhang, H.H. Chen, X.F. Yu, J.L. Lv, Y.Y. Liu, Y.S. Liu, G. Zheng, J.Q. Zhao, Y.F. Wei, et al. 2022. The sirtuin family in health and disease. Signal Transduction and Targeted Therapy 7: 402.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guo, Z., P. Li, J. Ge, and H. Li. 2022. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging & Disease 13: 1787–1822.

Article  Google Scholar 

Tasselli, L., W. Zheng, and K.F. Chua. 2017. SIRT6: Novel Mechanisms and Links to Aging and Disease. Trends in Endocrinology and Metabolism 28: 168–185.

Article  CAS  PubMed  Google Scholar 

Mostoslavsky, R., K.F. Chua, D.B. Lombard, W.W. Pang, M.R. Fischer, L. Gellon, P. Liu, G. Mostoslavsky, S. Franco, M.M. Murphy, et al. 2006. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124: 315–329.

Article  CAS  PubMed  Google Scholar 

Kanfi, Y., S. Naiman, G. Amir, V. Peshti, G. Zinman, L. Nahum, Z. Bar-Joseph, and H.Y. Cohen. 2012. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483: 218–221.

Article  CAS  PubMed  Google Scholar 

Kuang, J., L. Chen, Q. Tang, J. Zhang, Y. Li, and J. He. 2018. The Role of Sirt6 in Obesity and Diabetes. Frontiers in Physiology 9: 135.

Article  PubMed  PubMed Central  Google Scholar 

Ren, S.C., X. Chen, H. Gong, H. Wang, C. Wu, P.H. Li, X.F. Chen, J.H. Qu, and X. Tang. 2022. SIRT6 in Vascular Diseases, from Bench to Bedside. Aging & Disease 13: 1015–1029.

Article  Google Scholar 

Chen, Z., W. Liang, J. Hu, Z. Zhu, J. Feng, Y. Ma, Q. Yang, and G. Ding. 2022. Sirt6 deficiency contributes to mitochondrial fission and oxidative damage in podocytes via ROCK1-Drp1 signalling pathway. Cell Proliferation 55: e13296.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, X., L. Liu, W. Jiang, M. Liu, Y. Wang, H. Ma, N. Mu, and H. Wang. 2022. SIRT6 Protects Against Myocardial Ischemia-Reperfusion Injury by Attenuating Aging-Related CHMP2B Accumulation. Journal of Cardiovascular Translational Research 15: 740–753.

Article  PubMed  Google Scholar 

Wang, Z., Q. Wu, H. Wang, Y. Gao, K. Nie, Y. Tang, H. Su, M. Hu, J. Gong, K. Fang, et al. 2022. Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine 104: 154276.

Article  CAS  PubMed  Google Scholar 

Luan, Y., Y. Luo, and M. Deng. 2023. New advances in Nrf2-mediated analgesic drugs. Phytomedicine 110: 154598.

Article  CAS  PubMed  Google Scholar 

Patel, S., H. Khan, and A. Majumdar. 2022. Crosstalk between Sirtuins and Nrf2: SIRT1 activators as emerging treatment for diabetic neuropathy. Metabolic Brain Disease 37: 2181–2195.

Article  CAS  PubMed  Google Scholar 

Gao, Y., W. Liu, X. Su, X. Li, F. Yu, and N. Zhang. 2022. The Beneficial Effects of Chinese Herbal Monomers on Ameliorating Diabetic Cardiomyopathy via Nrf2 Signaling. Oxidative Medicine and Cellular Longevity 2022: 3959390.

Article  PubMed  PubMed Central  Google Scholar 

Long, M., M. Rojo de la Vega, Q. Wen, M. Bharara, T. Jiang, R. Zhang, S. Zhou, P.K. Wong, G.T. Wondrak, H. Zheng, et al. 2016. An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes 65: 780–793.

Article  CAS  PubMed  Google Scholar 

Liang, Z.H., S.S. Lin, N.F. Pan, G.Y. Zhong, Z.Y. Qiu, S.J. Kuang, Z.H. Lin, Z. Zhang, and Y.C. Pan. 2023. UCMSCs-derived exosomal circHIPK3 promotes ulcer wound angiogenesis of diabetes mellitus via miR-20b-5p/Nrf2/VEGFA axis. Diabetic Medicine 40: e14968.

Article  CAS  PubMed  Google Scholar 

Liu, Y., J. Mo, F. Liang, S. Jiang, J. Xiong, X. Meng, and Z. Mo. 2023. Pien-tze-huang promotes wound healing in streptozotocin-induced diabetes models associated with improving oxidative stress via the Nrf2/ARE pathway. Frontiers in Pharmacology 14: 1062664.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, J., X. Li, H. Liu, D. Zhong, K. Yin, Y. Li, L. Zhu, C. Xu, M. Li, and C. Wang. 2022. Bone marrow stromal cell-derived exosomal circular RNA improves diabetic foot ulcer wound healing by activating the nuclear factor erythroid 2-related factor 2 pathway and inhibiting ferroptosis. Diabet Med 40: e15031.

Sun, X., X. Wang, Z. Zhao, J. Chen, C. Li, and G. Zhao. 2020. Paeoniflorin accelerates foot wound healing in diabetic rats though activating the Nrf2 pathway. Acta Histochemica 122: 151649.

Article  CAS  PubMed  Google Scholar 

Ma, P., H. Shao, D. Xu, and X. Qi. 2025. Sirt6 regulates the Notch signaling pathway and mediates autophagy and regulates podocyte damage in diabetic nephropathy. Journal of Bioenergetics and Biomembranes 57: 49–55.

Article  CAS  PubMed  Google Scholar 

Wu, T., Y. Qu, S. Xu, Y. Wang, X. Liu, and D. Ma. 2023. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. The FASEB Journal 37: e23099.

Article  CAS  PubMed  Google Scholar 

Li, B., Z. Xin, S. Gao, Y. Li, S. Guo, Y. Fu, R. Xu, D. Wang, J. Cheng, L. Liu, et al. 2023. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis. Theranostics 13: 231–249.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zorrilla-Zubilete, M.A., A. Yeste, F.J. Quintana, D. Toiber, R. Mostoslavsky, and D.M. Silberman. 2018. Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6. Journal of Neurochemistry 144: 128–138.

Article  CAS  PubMed  Google Scholar 

Peng, D., Q. Xia, L. Guan, H.Y. Li, L.J. Qiao, Y.B. Chen, Y.F. Cai, Q. Wang, and S.J. Zhang. 2022. Carnosine Improves Cognitive Impairment Through Promoting SIRT6 Expression and Inhibiting Endoplasmic Reticulum Stress in a Diabetic Encephalopathy Model. Rejuvenation Research 25: 79–88.

Comments (0)

No login
gif