Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity

Perversi, F., C. Costa, A. Labate, S. Lattanzi, C. Liguori, M. Maschio, S. Meletti, L. Nobili, F.F. Operto, and A. Romigi. 2023. The broad-spectrum activity of perampanel: State of the art and future perspective of AMPA antagonism beyond epilepsy. Frontiers in Neurology 14: 1182304.

Article  PubMed  PubMed Central  Google Scholar 

Yadav, P., M. Podia, S.P. Kumari, and I. Mani. 2023. Glutamate receptor endocytosis and signaling in neurological conditions. Progress in Molecular Biology and Translational Science 196: 167–207.

Article  CAS  PubMed  Google Scholar 

Rodriguez-Chavez, V., J. Moran, G. Molina-Salinas, W.Z. Ruiz, M. Rodriguez, O. Picazo, and M. Cerbon. 2021. Participation of glutamatergic ionotropic receptors in excitotoxicity: The neuroprotective role of prolactin. Neuroscience 461: 180–193.

Article  CAS  PubMed  Google Scholar 

Lange, F., J. Hörnschemeyer, and T. Kirschstein. 2021. Glutamatergic mechanisms in glioblastoma and tumor-associated epilepsy. Cells 10: 1226.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian, A., T. Tamilanban, M. Sekar, M.Y. Begum, A. Atiya, G. Ramachawolran, L.S. Wong, V. Subramaniyan, S.H. Gan, and N.N.I.M. Rani. 2023. Neuroprotective potential of Marsilea quadrifolia Linn against monosodium glutamate-induced excitotoxicity in rats. Frontiers in Pharmacology 14.

Rubino, V., G. La Rosa, L. Pipicelli, F. Carriero, S. Damiano, M. Santillo, G. Terrazzano, G. Ruggiero, and P. Mondola. 2023. Insights on the multifaceted roles of wild-type and mutated superoxide dismutase 1 in amyotrophic lateral sclerosis pathogenesis. Antioxidants 12: 1747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ameen, S.S., N. Griem-Krey, A. Dufour, M.I. Hossain, A. Hoque, S. Sturgeon, H. Nandurkar, D.F. Draxler, R.L. Medcalf, and M.A. Kamaruddin. 2023. N-terminomic changes in neurons during excitotoxicity reveal proteolytic events associated with synaptic dysfunctions and potential targets for neuroprotection. Molecular and Cellular Proteomics 22 (5): 100543.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ambrogini, P., P. Torquato, D. Bartolini, M.C. Albertini, D. Lattanzi, M. Di Palma, R. Marinelli, M. Betti, A. Minelli, and R. Cuppini. 2019. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1865: 1098–1112.

Article  CAS  PubMed  Google Scholar 

Talbot, J., S. Chear, A. Phipps, A. Pébay, A.W. Hewitt, J.C. Vickers, A.E. King, and A.L. Cook. 2021. Image-based quantitation of kainic acid-induced excitotoxicity as a model of neurodegeneration in human iPSC-derived neurons. Induced Pluripotent Stem Cells and Human Disease: Methods and Protocols, Springer, pp. 187–207

Rabeh, N., B. Hajjar, J.O. Maraka, A.F. Sammanasunathan, M. Khan, S.M. Alkhaaldi, S. Mansour, R.T. Almheiri, H. Hamdan, and K.S. Abd-Elrahman. 2023. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomedicine and Pharmacotherapy 168: 115733.

Article  CAS  PubMed  Google Scholar 

Vincent, P., and C. Mulle. 2009. Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158: 309–323.

Article  CAS  PubMed  Google Scholar 

Hunsberger, J.G., A.H. Bennett, E. Selvanayagam, R.S. Duman, and S.S. Newton. 2005. Gene profiling the response to kainic acid induced seizures. Molecular Brain Research 141: 95–112.

Article  CAS  PubMed  Google Scholar 

Falcón-Moya, R., T.S. Sihra, and A. Rodríguez-Moreno. 2018. Kainate receptors: role in epilepsy. Frontiers in Molecular Neuroscience 11: 217.

Article  PubMed  Google Scholar 

Mizuno, S., Z. Koneval, D.K. Zierath, K.M. Knox, H.S. White, and M. Barker-Haliski. 2021. Diurnal burden of spontaneous seizures in early epileptogenesis in the post-kainic acid rat model of epilepsy. Epilepsia Open 6: 431–436.

Article  PubMed  PubMed Central  Google Scholar 

Bondy, S.C., and D.K. Lee. 1993. Oxidative stress induced by glutamate receptor agonists. Brain Research 610: 229–233.

Article  CAS  PubMed  Google Scholar 

Suha, A.J., S.S. Sadr, M. Roghani, S.M. Haftcheshmeh, S. Khamse, and A.A. Momtazi-Borojeni. 2023. Ferulic Acid Attenuates Kainate-induced Neurodegeneration in a Rat Poststatus Epilepticus Model. Current Molecular Pharmacology 16: 178–187.

Article  CAS  PubMed  Google Scholar 

Ojo, E.S., I.O. Ishola, B. Ben-Azu, O.O. Afolayan, A.B. James, A.M. Ajayi, S. Umukoro, and O.O. Adeyemi. 2019. Ameliorative influence of Cnestis ferruginea vahl ex DC (Connaraceae) root extract on kainic acid-induced temporal lobe epilepsy in mice: Role of oxidative stress and neuroinflammation. Journal of Ethnopharmacology 243: 112117.

Article  CAS  PubMed  Google Scholar 

Wang, Q., S. Yu, A. Simonyi, G.Y. Sun, and A.Y. Sun. 2005. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology 31: 3–16.

Article  CAS  PubMed  Google Scholar 

Gillardon, F., H. Wickert, and M. Zimmermann. 1995. Up-regulation of bax and down-regulation of bc1–2 is associated with kainate-induced apoptosis in mouse brain. Neuroscience Letters 192: 85–88.

Article  CAS  PubMed  Google Scholar 

Nadler, J., D. Evenson, and G. Cuthbertson. 1981. Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons. Neuroscience 6: 2505–2517.

Article  CAS  PubMed  Google Scholar 

Bardgett, M.E., S.L. Salaris, J.L. Jackson, J. Harding, and J.G. Csernansky. 1997. The effects of kainic acid lesions on dopaminergic responses to haloperidol and clozapine. Psychopharmacology (Berl) 133: 142–151.

Article  CAS  PubMed  Google Scholar 

Tran, V.T., and S.H. Snyder. 1979. Amino acid neurotransmitter candidates in rat cerebellum: Selective effects of kainic acid lesions. Brain Research 167: 345–353.

Article  Google Scholar 

Fan, Q., Y.-Z. Wu, X.-X. Jia, C.-M. Liu, W.-W. Zhang, Z.-Y. Chao, D.-H. Zhou, Y. Wang, J. Chen, and K. Xiao. 2023. Increased Gal-3 mediates microglia activation and neuroinflammation via the TREM2 signaling pathway in prion infection. ACS Chemical Neuroscience 14: 3772–3793.

Article  CAS  PubMed  Google Scholar 

Tan, Y., Y. Zheng, D. Xu, Z. Sun, H. Yang, and Q. Yin. 2021. Galectin-3: A key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell and Bioscience 11: 78.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Dalahmah, O., L. Campos Soares, J. Nicholson, S. Draijer, M. Mundim, V.M. Lu, B. Sun, T. Tyler, I. Adorján, and E. O’Neill. 2020. Galectin-3 modulates postnatal subventricular zone gliogenesis. Glia 68: 435–450.

Article  PubMed  Google Scholar 

Borrego-Écija, S., A. Pérez-Millan, A. Antonell, L. Fort-Aznar, E. Kaya-Tilki, A. León-Halcón, A. Lladó, L. Molina-Porcel, M. Balasa, and J. Juncà-Parella. 2023. Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity. Alzheimer’s and Dementia 20 (3): 1515–1526.

Article  PubMed  PubMed Central  Google Scholar 

Wang, Q., R. Gao, M. Wang, Q. Chen, M. Xiao, Z. Li, L. Wang, and C. Chen. 2019. Spatiotemporal expression patterns of Galectin-3 in perinatal rat hypoxic-ischemic brain injury model. Neuroscience Letters 711: 134439.

Article  CAS  PubMed  Google Scholar 

Jayaswamy, P.K., M. Vijaykrishnaraj, P. Patil, L.M. Alexander, A. Kellarai, and P. Shetty. 2023. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Research Reviews 83: 101791.

Article  CAS  PubMed  Google Scholar 

Lima, T., L. Perpétuo, R. Henrique, M. Fardilha, A. Leite-Moreira, J. Bastos, and R. Vitorino. 2023. Galectin-3 in prostate cancer and heart diseases: A biomarker for these two frightening pathologies? Molecular Biology Reports 50: 2763–2778.

Article  CAS  PubMed  Google Scholar 

Blanda, V., U.M. Bracale, M.D. Di Taranto, and G. Fortunato. 2020. Galectin-3 in cardiovascular diseases. International Journal of Molecular Sciences 21: 9232.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He, Y.-S., Y.-Q. Hu, K. Xiang, Y. Chen, Y.-T. Feng, K.-J. Yin, J.-X. Huang, J. Wang, Z.-D. Wu, and G.-H. Wang. 2022. Therapeutic potential of Galectin-1 and Galectin-3 in autoimmune diseases. Current Pharmaceutical Design 28: 36–45.

Article  PubMed 

Comments (0)

No login
gif