Perversi, F., C. Costa, A. Labate, S. Lattanzi, C. Liguori, M. Maschio, S. Meletti, L. Nobili, F.F. Operto, and A. Romigi. 2023. The broad-spectrum activity of perampanel: State of the art and future perspective of AMPA antagonism beyond epilepsy. Frontiers in Neurology 14: 1182304.
Article PubMed PubMed Central Google Scholar
Yadav, P., M. Podia, S.P. Kumari, and I. Mani. 2023. Glutamate receptor endocytosis and signaling in neurological conditions. Progress in Molecular Biology and Translational Science 196: 167–207.
Article CAS PubMed Google Scholar
Rodriguez-Chavez, V., J. Moran, G. Molina-Salinas, W.Z. Ruiz, M. Rodriguez, O. Picazo, and M. Cerbon. 2021. Participation of glutamatergic ionotropic receptors in excitotoxicity: The neuroprotective role of prolactin. Neuroscience 461: 180–193.
Article CAS PubMed Google Scholar
Lange, F., J. Hörnschemeyer, and T. Kirschstein. 2021. Glutamatergic mechanisms in glioblastoma and tumor-associated epilepsy. Cells 10: 1226.
Article CAS PubMed PubMed Central Google Scholar
Subramanian, A., T. Tamilanban, M. Sekar, M.Y. Begum, A. Atiya, G. Ramachawolran, L.S. Wong, V. Subramaniyan, S.H. Gan, and N.N.I.M. Rani. 2023. Neuroprotective potential of Marsilea quadrifolia Linn against monosodium glutamate-induced excitotoxicity in rats. Frontiers in Pharmacology 14.
Rubino, V., G. La Rosa, L. Pipicelli, F. Carriero, S. Damiano, M. Santillo, G. Terrazzano, G. Ruggiero, and P. Mondola. 2023. Insights on the multifaceted roles of wild-type and mutated superoxide dismutase 1 in amyotrophic lateral sclerosis pathogenesis. Antioxidants 12: 1747.
Article CAS PubMed PubMed Central Google Scholar
Ameen, S.S., N. Griem-Krey, A. Dufour, M.I. Hossain, A. Hoque, S. Sturgeon, H. Nandurkar, D.F. Draxler, R.L. Medcalf, and M.A. Kamaruddin. 2023. N-terminomic changes in neurons during excitotoxicity reveal proteolytic events associated with synaptic dysfunctions and potential targets for neuroprotection. Molecular and Cellular Proteomics 22 (5): 100543.
Article CAS PubMed PubMed Central Google Scholar
Ambrogini, P., P. Torquato, D. Bartolini, M.C. Albertini, D. Lattanzi, M. Di Palma, R. Marinelli, M. Betti, A. Minelli, and R. Cuppini. 2019. Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1865: 1098–1112.
Article CAS PubMed Google Scholar
Talbot, J., S. Chear, A. Phipps, A. Pébay, A.W. Hewitt, J.C. Vickers, A.E. King, and A.L. Cook. 2021. Image-based quantitation of kainic acid-induced excitotoxicity as a model of neurodegeneration in human iPSC-derived neurons. Induced Pluripotent Stem Cells and Human Disease: Methods and Protocols, Springer, pp. 187–207
Rabeh, N., B. Hajjar, J.O. Maraka, A.F. Sammanasunathan, M. Khan, S.M. Alkhaaldi, S. Mansour, R.T. Almheiri, H. Hamdan, and K.S. Abd-Elrahman. 2023. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomedicine and Pharmacotherapy 168: 115733.
Article CAS PubMed Google Scholar
Vincent, P., and C. Mulle. 2009. Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158: 309–323.
Article CAS PubMed Google Scholar
Hunsberger, J.G., A.H. Bennett, E. Selvanayagam, R.S. Duman, and S.S. Newton. 2005. Gene profiling the response to kainic acid induced seizures. Molecular Brain Research 141: 95–112.
Article CAS PubMed Google Scholar
Falcón-Moya, R., T.S. Sihra, and A. Rodríguez-Moreno. 2018. Kainate receptors: role in epilepsy. Frontiers in Molecular Neuroscience 11: 217.
Mizuno, S., Z. Koneval, D.K. Zierath, K.M. Knox, H.S. White, and M. Barker-Haliski. 2021. Diurnal burden of spontaneous seizures in early epileptogenesis in the post-kainic acid rat model of epilepsy. Epilepsia Open 6: 431–436.
Article PubMed PubMed Central Google Scholar
Bondy, S.C., and D.K. Lee. 1993. Oxidative stress induced by glutamate receptor agonists. Brain Research 610: 229–233.
Article CAS PubMed Google Scholar
Suha, A.J., S.S. Sadr, M. Roghani, S.M. Haftcheshmeh, S. Khamse, and A.A. Momtazi-Borojeni. 2023. Ferulic Acid Attenuates Kainate-induced Neurodegeneration in a Rat Poststatus Epilepticus Model. Current Molecular Pharmacology 16: 178–187.
Article CAS PubMed Google Scholar
Ojo, E.S., I.O. Ishola, B. Ben-Azu, O.O. Afolayan, A.B. James, A.M. Ajayi, S. Umukoro, and O.O. Adeyemi. 2019. Ameliorative influence of Cnestis ferruginea vahl ex DC (Connaraceae) root extract on kainic acid-induced temporal lobe epilepsy in mice: Role of oxidative stress and neuroinflammation. Journal of Ethnopharmacology 243: 112117.
Article CAS PubMed Google Scholar
Wang, Q., S. Yu, A. Simonyi, G.Y. Sun, and A.Y. Sun. 2005. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Molecular Neurobiology 31: 3–16.
Article CAS PubMed Google Scholar
Gillardon, F., H. Wickert, and M. Zimmermann. 1995. Up-regulation of bax and down-regulation of bc1–2 is associated with kainate-induced apoptosis in mouse brain. Neuroscience Letters 192: 85–88.
Article CAS PubMed Google Scholar
Nadler, J., D. Evenson, and G. Cuthbertson. 1981. Comparative toxicity of kainic acid and other acidic amino acids toward rat hippocampal neurons. Neuroscience 6: 2505–2517.
Article CAS PubMed Google Scholar
Bardgett, M.E., S.L. Salaris, J.L. Jackson, J. Harding, and J.G. Csernansky. 1997. The effects of kainic acid lesions on dopaminergic responses to haloperidol and clozapine. Psychopharmacology (Berl) 133: 142–151.
Article CAS PubMed Google Scholar
Tran, V.T., and S.H. Snyder. 1979. Amino acid neurotransmitter candidates in rat cerebellum: Selective effects of kainic acid lesions. Brain Research 167: 345–353.
Fan, Q., Y.-Z. Wu, X.-X. Jia, C.-M. Liu, W.-W. Zhang, Z.-Y. Chao, D.-H. Zhou, Y. Wang, J. Chen, and K. Xiao. 2023. Increased Gal-3 mediates microglia activation and neuroinflammation via the TREM2 signaling pathway in prion infection. ACS Chemical Neuroscience 14: 3772–3793.
Article CAS PubMed Google Scholar
Tan, Y., Y. Zheng, D. Xu, Z. Sun, H. Yang, and Q. Yin. 2021. Galectin-3: A key player in microglia-mediated neuroinflammation and Alzheimer’s disease. Cell and Bioscience 11: 78.
Article CAS PubMed PubMed Central Google Scholar
Al-Dalahmah, O., L. Campos Soares, J. Nicholson, S. Draijer, M. Mundim, V.M. Lu, B. Sun, T. Tyler, I. Adorján, and E. O’Neill. 2020. Galectin-3 modulates postnatal subventricular zone gliogenesis. Glia 68: 435–450.
Borrego-Écija, S., A. Pérez-Millan, A. Antonell, L. Fort-Aznar, E. Kaya-Tilki, A. León-Halcón, A. Lladó, L. Molina-Porcel, M. Balasa, and J. Juncà-Parella. 2023. Galectin-3 is upregulated in frontotemporal dementia patients with subtype specificity. Alzheimer’s and Dementia 20 (3): 1515–1526.
Article PubMed PubMed Central Google Scholar
Wang, Q., R. Gao, M. Wang, Q. Chen, M. Xiao, Z. Li, L. Wang, and C. Chen. 2019. Spatiotemporal expression patterns of Galectin-3 in perinatal rat hypoxic-ischemic brain injury model. Neuroscience Letters 711: 134439.
Article CAS PubMed Google Scholar
Jayaswamy, P.K., M. Vijaykrishnaraj, P. Patil, L.M. Alexander, A. Kellarai, and P. Shetty. 2023. Implicative role of epidermal growth factor receptor and its associated signaling partners in the pathogenesis of Alzheimer’s disease. Ageing Research Reviews 83: 101791.
Article CAS PubMed Google Scholar
Lima, T., L. Perpétuo, R. Henrique, M. Fardilha, A. Leite-Moreira, J. Bastos, and R. Vitorino. 2023. Galectin-3 in prostate cancer and heart diseases: A biomarker for these two frightening pathologies? Molecular Biology Reports 50: 2763–2778.
Article CAS PubMed Google Scholar
Blanda, V., U.M. Bracale, M.D. Di Taranto, and G. Fortunato. 2020. Galectin-3 in cardiovascular diseases. International Journal of Molecular Sciences 21: 9232.
Article CAS PubMed PubMed Central Google Scholar
He, Y.-S., Y.-Q. Hu, K. Xiang, Y. Chen, Y.-T. Feng, K.-J. Yin, J.-X. Huang, J. Wang, Z.-D. Wu, and G.-H. Wang. 2022. Therapeutic potential of Galectin-1 and Galectin-3 in autoimmune diseases. Current Pharmaceutical Design 28: 36–45.
Comments (0)