A Quinoxaline Derivative as a New Therapeutic Agent for Sepsis through Suppression of TLR4 Signaling Pathways

Hotchkiss, R.S., L.L. Moldawer, S.M. Opal, K. Reinhart, I.R. Turnbull, and J.-L. Vincent. 2016. Sepsis and septic shock. Nature Reviews Disease Primers 2: 1–21.

Article  Google Scholar 

Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, et al. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). Journal of the American Medical Association 315: 801–810.

Article  CAS  PubMed  Google Scholar 

Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, et al. 2020. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study. The Lancet 395: 200–211.

Article  Google Scholar 

Cao, M., G. Wang, and J. Xie. 2023. Immune dysregulation in sepsis: Experiences, lessons and perspectives. Cell Death Discovery 9: 465.

Article  PubMed  PubMed Central  Google Scholar 

Basak, B., and S. Akashi-Takamura. 2024. IRF3 function and immunological gaps in sepsis. Frontiers in Immunology 15: 1336813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Romerio, A., and F. Peri. 2020. Increasing the chemical variety of small-molecule-based TLR4 modulators: An overview. Frontiers in Immunology 11: 1210.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Billod, J.-M., A. Lacetera, J. Guzmán-Caldentey, and S. Martín-Santamaría. 2016. Computational approaches to toll-like receptor 4 modulation. Molecules 21: 994.

Article  PubMed  PubMed Central  Google Scholar 

Hanieh H., Alfwuaires M.A., Abduh M.S., Abdrabu A., Qinna N.A., and Alzahrani A.M. 2024 Protective effects of a Dihydrodiazepine against endotoxin shock through suppression of TLR4/NF-κB/IRF3. Signaling Pathways. Inflammation 1–16.

AlZahrani, A. M., P. Rajendran, G. M. Bekhet, R. Balasubramanian, L. K. Govindaram, Ahmed EA, et al. 2024. Protective effect of 5, 4-dihydroxy-6, 8-dimethoxy7-O-rhamnosylflavone from Indigofera aspalathoides Vahl on lipopolysaccharide-induced intestinal injury in mice. Inflammopharmacology 1–15.

Vaez, H., M. Rameshrad, M. Najafi, J. Barar, A. Barzegari, and A. Garjani. 2016. Cardioprotective effect of metformin in lipopolysaccharide-induced sepsis via suppression of toll-like receptor 4 (TLR4) in heart. European Journal of Pharmacology 772: 115–123.

Article  CAS  PubMed  Google Scholar 

Zheng, Y., Y. Gao, W. Zhu, X.-g Bai, and J. Qi. 2024: Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. European Journal of Medicinal Chemistry 268: 116300.

Article  CAS  PubMed  Google Scholar 

Lambertucci, F., O. Motiño, S. Villar, J.P. Rigalli, Alvarez M. de Luján, V.A. Catania, et al. 2017. Benznidazole, the trypanocidal drug used for Chagas disease, induces hepatic NRF2 activation and attenuates the inflammatory response in a murine model of sepsis. Toxicology and Applied Pharmacology 315: 12–22.

Article  CAS  PubMed  Google Scholar 

Yildiz, I.E., A. Topcu, I. Bahceci, M. Arpa, L. Tumkaya, T. Mercantepe, et al. 2021. The protective role of fosfomycin in lung injury due to oxidative stress and inflammation caused by sepsis. Life Sciences 279: 119662.

Article  CAS  PubMed  Google Scholar 

Jin, Y., Z. Li, H. Chen, X. Jiang, Y. Zhang, and F. Wu. 2019. Effect of dexmedetomidine on kidney injury in sepsis rats through TLR4/MyD88/NF-κB/iNOS signaling pathway. European Review for Medical and Pharmacological Sciences 23: 5020–5025.

PubMed  Google Scholar 

Cheng, G., W. Sa, C. Cao, L. Guo, H. Hao, Z. Liu, et al. 2016. Quinoxaline 1, 4-di-N-oxides: Biological activities and mechanisms of actions. Frontiers in Pharmacology 7: 64.

Article  PubMed  PubMed Central  Google Scholar 

Meka, G., and R. Chintakunta. 2023. Analgesic and anti-inflammatory activity of quinoxaline derivatives: Design synthesis and characterization. Results in Chemistry 5: 100783.

Article  CAS  Google Scholar 

Anjali, Kamboj P, O., Alam, H., Patel, I., Ahmad, S. S., Ahmad et al. 2024. Design, synthesis, biological evaluation, and in silico studies of quinoxaline derivatives as potent p38α MAPK inhibitors. Archiv der Pharmazie 357:2300301.

Neri, J.M., P.E.A. Siqueira, A.LCd.S.L. Oliveira, R.M. Araújo, RFd. Araújo, A.A. Martins, et al. 2024. Anticancer, anti-inflammatory and analgesic activities of aminoalcohol-based quinoxaline small molecules. Acta Cirúrgica Brasileira 39: e395124.

PubMed  PubMed Central  Google Scholar 

Daghistani, H., Y. Almoghrabi, T. Shamrani, M. M. Jawi, and M. A. Bazuhai. 2024. Mitigation of indomethacin-induced gastric ulcer in rats by 2, 3-Dichloro-6-(trifluoromethoxy) quinoxaline: modulation of inflammatory mechanisms. Journal of Contemporary Medical Sciences 10:318–324.

Gan, P., L. Ding, G. Hang, Q. Xia, Z. Huang, X. Ye, et al. 2020. Oxymatrine attenuates dopaminergic neuronal damage and microglia-mediated neuroinflammation through cathepsin D-dependent HMGB1/TLR4/NF-κB pathway in Parkinson’s disease. Frontiers in Pharmacology 11: 776.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferri, F., A. Parcelier, V. Petit, A.-S. Gallouet, D. Lewandowski, M. Dalloz, et al. 2015. TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation. Nature Communications 6: 8900.

Article  CAS  PubMed  Google Scholar 

Zaman, M.M.-U., K. Masuda, K.K. Nyati, P.K. Dubey, B. Ripley, K. Wang, et al. 2016. Arid5a exacerbates IFN-γ–mediated septic shock by stabilizing T-bet mRNA. Proceedings of the National Academy of Sciences 113: 11543–11548.

Article  Google Scholar 

Luo, W.-J., S.-L. Yu, C.-C. Chang, M.-H. Chien, Y.-L. Chang, K.-M. Liao, et al. 2022. HLJ1 amplifies endotoxin-induced sepsis severity by promoting IL-12 heterodimerization in macrophages. eLife 11: e76094.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zemtsovski, J.D., S. Tumpara, S. Schmidt, V. Vijayan, A. Klos, R. Laudeley, et al. 2024. Alpha1-antitrypsin improves survival in murine abdominal sepsis model by decreasing inflammation and sequestration of free heme. Frontiers in Immunology 15: 1368040.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shrum, B., R.V. Anantha, S.X. Xu, M. Donnelly, S.M. Haeryfar, J.K. McCormick, et al. 2014. A robust scoring system to evaluate sepsis severity in an animal model. BMC Research Notes 7: 1–11.

Article  Google Scholar 

Nolan, A., H. Kobayashi, B. Naveed, A. Kelly, Y. Hoshino, S. Hoshino, et al. 2009. Differential role for CD80 and CD86 in the regulation of the innate immune response in murine polymicrobial sepsis. PLoS ONE 4: e6600.

Article  PubMed  PubMed Central  Google Scholar 

Nakamori, Y., E.J. Park, and M. Shimaoka. 2021. Immune deregulation in sepsis and septic shock: Reversing immune paralysis by targeting PD-1/PD-L1 pathway. Frontiers in Immunology 11: 624279.

Article  PubMed  PubMed Central  Google Scholar 

Liu, Y.-C., S.-T. Shou, and Y.-F. Chai. 2022. Immune checkpoints in sepsis: New hopes and challenges. International Reviews of Immunology 41: 207–216.

Article  CAS  PubMed  Google Scholar 

Lelubre, C., and J.-L. Vincent. 2018. Mechanisms and treatment of organ failure in sepsis. Nature Reviews Nephrology 14: 417–427.

Article  PubMed  Google Scholar 

Pauken, K.E., and E.J. Wherry. 2015. SnapShot: T cell exhaustion. Cell 3163: 1038-1038. e1.

Garofalo, A.M., M. Lorente-Ros, G. Goncalvez, D. Carriedo, A. Ballén-Barragán, A. Villar-Fernández, et al. 2019. Histopathological changes of organ dysfunction in sepsis. Intensive Care Medicine Experimental 7: 1–15.

Article  Google Scholar 

Yang, J., X. Zhu, and J. Feng. 2024. The changes in the quantity of lymphocyte subpopulations during the process of sepsis. International Journal of Molecular Sciences 25: 1902.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alverdy, J.C., R. Keskey, R. Thewissen. 2020. Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infection and immunity 88. https://doi.org/10.1128/IAI.00942-19.

Pereira, J.A., A.M. Pessoa, M.N.D. Cordeiro, R. Fernandes, C. Prudêncio, J.P. Noronha, et al. 2015. Quinoxaline, its derivatives and applications: A State of the Art review. European Journal of Medicinal Chemistry 97: 664–672.

Article  CAS  PubMed  Google Scholar 

Guirado, A., J.I.L. Sánchez, A.J. Ruiz-Alcaraz, D. Bautista, and J. Gálvez. 2012. Synthesis and biological evaluation of 4-alkoxy-6, 9-dichloro [1, 2, 4] triazolo [4, 3-a] quinoxalines as inhibitors of TNF-α and IL-6. European Journal of Medicinal Chemistry 54: 87–94.

Article  CAS  PubMed  Google Scholar 

Xu, J., S. Shi, G. Liu, X. Xie, J. Li, A.A. Bolinger, et al. 2023. Design, synthesis, and pharmacological evaluations of pyrrolo [1, 2-a] quinoxaline-based derivatives as potent and selective sirt6 activators. European journal of medicinal chemistry 246: 114998.

Article  CAS  PubMed 

Comments (0)

No login
gif