GBD 2016 Neurology Collaborators. 2019. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology 18: 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X.
Tanner, C.M., and J.L. Ostrem. 2024. Parkinson’s disease. New England Journal of Medicine 391: 442–452. https://doi.org/10.1056/NEJMra2401857.
Article CAS PubMed Google Scholar
Armstrong, M.J., and M.S. Okun. 2020. Diagnosis and treatment of Parkinson disease: A review. JAMA 323: 548–560. https://doi.org/10.1001/jama.2019.22360.
Tan, E.-K., Y.-X. Chao, A. West, L.-L. Chan, W. Poewe, and J. Jankovic. 2020. Parkinson disease and the immune system - associations mechanisms and therapeutics. Nature Reviews Neurology 16: 303–318. https://doi.org/10.1038/s41582-020-0344-4.
Bloem, B.R., M.S. Okun, and C. Klein. 2021. Parkinson’s disease. Lancet 397: 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X.
Article CAS PubMed Google Scholar
Poewe, W., K. Seppi, C.M. Tanner, G.M. Halliday, P. Brundin, J. Volkmann, A.-E. Schrag, and A.E. Lang. 2017. Parkinson disease. Nature Reviews Disease Primers 3: 17013. https://doi.org/10.1038/nrdp.2017.13.
Kalia, L.V., and A.E. Lang. 2015. Parkinson’s disease. Lancet 386: 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.
Article CAS PubMed Google Scholar
Tansey, M.G., R.L. Wallings, M.C. Houser, M.K. Herrick, C.E. Keating, and V. Joers. 2022. Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology 22: 657–673. https://doi.org/10.1038/s41577-022-00684-6.
Article CAS PubMed PubMed Central Google Scholar
Öberg, M., I. Fabrik, D. Fabrikova, N. Zehetner, and A. Härtlova. 2021. The role of innate immunity and inflammation in Parkinson´s disease. Scandinavian Journal of Immunology 93: e13022. https://doi.org/10.1111/sji.13022.
Jiang, S.-Y., T. Tian, H. Yao, X.-M. Xia, C. Wang, L. Cao, G. Hu, R.-H. Du, and M. Lu. 2023. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death and Differentiation 30: 2280–2292. https://doi.org/10.1038/s41418-023-01216-y.
Article CAS PubMed PubMed Central Google Scholar
Liu, Y., T. Liu, Y. Zhou, W. Li, M. Wang, N. Song, W. Zhang, J. Jiang, S. Yuan, J. Ding, et al. 2023. Impeding the combination of astrocytic ASCT2 and NLRP3 by talniflumate alleviates neuroinflammation in experimental models of Parkinson’s disease. Acta Pharmaceutica Sinica B 13: 662–677. https://doi.org/10.1016/j.apsb.2022.07.021.
Article CAS PubMed Google Scholar
Liu, J., Y. Liang, Q. Meng, J. Chen, J. Ma, H. Zhu, L. Cai, N. Song, J. Ding, Y. Fan, et al. 2024. Antagonism of β-arrestins in IL-4–driven microglia reactivity via the Samd4/mTOR/OXPHOS axis in Parkinson’s disease. Science Advances 10: eadn4845. https://doi.org/10.1126/sciadv.adn4845.
Article CAS PubMed PubMed Central Google Scholar
Badanjak, K., S. Fixemer, S. Smajić, A. Skupin, and A. Grünewald. 2021. The contribution of microglia to neuroinflammation in Parkinson’s disease. IJMS 22: 4676. https://doi.org/10.3390/ijms22094676.
Article CAS PubMed PubMed Central Google Scholar
Hickman, S., S. Izzy, P. Sen, L. Morsett, and J. El Khoury. 2018. Microglia in neurodegeneration. Nature Neuroscience 21: 1359–1369. https://doi.org/10.1038/s41593-018-0242-x.
Article CAS PubMed PubMed Central Google Scholar
Zhang, L., K. Kuca, L. You, Y. Zhao, K. Musilek, E. Nepovimova, Q. Wu, W. Wu, and V. Adam. 2022. Signal transducer and activator of transcription 3 signaling in tumor immune evasion. Pharmacology and Therapeutics 230: 107969. https://doi.org/10.1016/j.pharmthera.2021.107969.
Article CAS PubMed Google Scholar
Shih, P.-C. 2022. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacology and Therapeutics 234: 108118. https://doi.org/10.1016/j.pharmthera.2022.108118.
Article CAS PubMed Google Scholar
Keren-Shaul, H., A. Spinrad, A. Weiner, O. Matcovitch-Natan, R. Dvir-Szternfeld, T.K. Ulland, E. David, K. Baruch, D. Lara-Astaiso, B. Toth, et al. 2017. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169: 1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018.
Article CAS PubMed Google Scholar
Xue, C., Q. Yao, X. Gu, Q. Shi, X. Yuan, Q. Chu, Z. Bao, J. Lu, and L. Li. 2023. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduction and Targeted Therapy 8: 204. https://doi.org/10.1038/s41392-023-01468-7.
Article PubMed PubMed Central Google Scholar
Li, J., H. Liu, X. Wang, Y. Xia, J. Huang, T. Wang, Z. Lin, and N. Xiong. 2022. Melatonin ameliorates Parkinson’s disease via regulating microglia polarization in a RORα-dependent pathway. NPJ Parkinsons Disease 8: 90. https://doi.org/10.1038/s41531-022-00352-5.
Hong, H., Y. Wang, M. Menard, J.A. Buckley, L. Zhou, L. Volpicelli-Daley, D.G. Standaert, H. Qin, and E.N. Benveniste. 2024. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson’s disease. Journal of Neuroinflammation 21: 216. https://doi.org/10.1186/s12974-024-03210-8.
Article CAS PubMed PubMed Central Google Scholar
Park, J., K.M. Jang, and K.-K. Park. 2022. Effects of Apamin on MPP+-Induced calcium overload and neurotoxicity by targeting CaMKII/ERK/P65/STAT3 signaling pathways in dopaminergic neuronal cells. International Journal of Molecular Sciences 23: 15255. https://doi.org/10.3390/ijms232315255.
Article CAS PubMed PubMed Central Google Scholar
Luo, Y., T. Ali, Z. Liu, R. Gao, A. Li, C. Yang, L. Ling, L. He, and S. Li. 2023. EPO prevents neuroinflammation and relieves depression via JAK/STAT signaling. Life Sciences 333: 122102. https://doi.org/10.1016/j.lfs.2023.122102.
Article CAS PubMed Google Scholar
Morris, H.R., M.G. Spillantini, C.M. Sue, and C.H. Williams-Gray. 2024. The pathogenesis of Parkinson’s disease. Lancet 403: 293–304. https://doi.org/10.1016/S0140-6736(23)01478-2.
Article CAS PubMed Google Scholar
Kouli, A., C.B. Horne, and C.H. Williams-Gray. 2019. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-Synucleinopathies. Brain, Behavior, and Immunity 81: 41–51. https://doi.org/10.1016/j.bbi.2019.06.042.
Article CAS PubMed Google Scholar
Gordon, R., E.A. Albornoz, D.C. Christie, M.R. Langley, V. Kumar, S. Mantovani, A.A.B. Robertson, M.S. Butler, D.B. Rowe, L.A. O’Neill, et al. 2018. Inflammasome inhibition prevents α-Synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine 10: eaah4066. https://doi.org/10.1126/scitranslmed.aah4066.
Article CAS PubMed PubMed Central Google Scholar
Kou, L., X. Chi, Y. Sun, C. Han, F. Wan, J. Hu, S. Yin, J. Wu, Y. Li, Q. Zhou, et al. 2022. The circadian clock protein rev-erbα provides neuroprotection and attenuates neuroinflammation against parkinson’s disease via the microglial NLRP3 inflammasome. Journal of Neuroinflammation 19: 133. https://doi.org/10.1186/s12974-022-02494-y.
Article CAS PubMed PubMed Central Google Scholar
Harding, O., E. Holzer, J.F. Riley, S. Martens, and E.L.F. Holzbaur. 2023. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Molecular Cell 83: 3188-3204.e7. https://doi.org/10.1016/j.molcel.2023.08.005.
Comments (0)