Integrated Analysis of Single-Cell and Transcriptome Data Reveals the Role and Regulatory Mechanisms of Neuroinflammation in Parkinson's Disease

GBD 2016 Neurology Collaborators. 2019. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology 18: 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X.

Article  Google Scholar 

Tanner, C.M., and J.L. Ostrem. 2024. Parkinson’s disease. New England Journal of Medicine 391: 442–452. https://doi.org/10.1056/NEJMra2401857.

Article  CAS  PubMed  Google Scholar 

Armstrong, M.J., and M.S. Okun. 2020. Diagnosis and treatment of Parkinson disease: A review. JAMA 323: 548–560. https://doi.org/10.1001/jama.2019.22360.

Article  PubMed  Google Scholar 

Tan, E.-K., Y.-X. Chao, A. West, L.-L. Chan, W. Poewe, and J. Jankovic. 2020. Parkinson disease and the immune system - associations mechanisms and therapeutics. Nature Reviews Neurology 16: 303–318. https://doi.org/10.1038/s41582-020-0344-4.

Article  PubMed  Google Scholar 

Bloem, B.R., M.S. Okun, and C. Klein. 2021. Parkinson’s disease. Lancet 397: 2284–2303. https://doi.org/10.1016/S0140-6736(21)00218-X.

Article  CAS  PubMed  Google Scholar 

Poewe, W., K. Seppi, C.M. Tanner, G.M. Halliday, P. Brundin, J. Volkmann, A.-E. Schrag, and A.E. Lang. 2017. Parkinson disease. Nature Reviews Disease Primers 3: 17013. https://doi.org/10.1038/nrdp.2017.13.

Article  PubMed  Google Scholar 

Kalia, L.V., and A.E. Lang. 2015. Parkinson’s disease. Lancet 386: 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3.

Article  CAS  PubMed  Google Scholar 

Tansey, M.G., R.L. Wallings, M.C. Houser, M.K. Herrick, C.E. Keating, and V. Joers. 2022. Inflammation and immune dysfunction in Parkinson disease. Nature Reviews Immunology 22: 657–673. https://doi.org/10.1038/s41577-022-00684-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Öberg, M., I. Fabrik, D. Fabrikova, N. Zehetner, and A. Härtlova. 2021. The role of innate immunity and inflammation in Parkinson´s disease. Scandinavian Journal of Immunology 93: e13022. https://doi.org/10.1111/sji.13022.

Article  PubMed  Google Scholar 

Jiang, S.-Y., T. Tian, H. Yao, X.-M. Xia, C. Wang, L. Cao, G. Hu, R.-H. Du, and M. Lu. 2023. The cGAS-STING-YY1 axis accelerates progression of neurodegeneration in a mouse model of Parkinson’s disease via LCN2-dependent astrocyte senescence. Cell Death and Differentiation 30: 2280–2292. https://doi.org/10.1038/s41418-023-01216-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Y., T. Liu, Y. Zhou, W. Li, M. Wang, N. Song, W. Zhang, J. Jiang, S. Yuan, J. Ding, et al. 2023. Impeding the combination of astrocytic ASCT2 and NLRP3 by talniflumate alleviates neuroinflammation in experimental models of Parkinson’s disease. Acta Pharmaceutica Sinica B 13: 662–677. https://doi.org/10.1016/j.apsb.2022.07.021.

Article  CAS  PubMed  Google Scholar 

Liu, J., Y. Liang, Q. Meng, J. Chen, J. Ma, H. Zhu, L. Cai, N. Song, J. Ding, Y. Fan, et al. 2024. Antagonism of β-arrestins in IL-4–driven microglia reactivity via the Samd4/mTOR/OXPHOS axis in Parkinson’s disease. Science Advances 10: eadn4845. https://doi.org/10.1126/sciadv.adn4845.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Badanjak, K., S. Fixemer, S. Smajić, A. Skupin, and A. Grünewald. 2021. The contribution of microglia to neuroinflammation in Parkinson’s disease. IJMS 22: 4676. https://doi.org/10.3390/ijms22094676.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hickman, S., S. Izzy, P. Sen, L. Morsett, and J. El Khoury. 2018. Microglia in neurodegeneration. Nature Neuroscience 21: 1359–1369. https://doi.org/10.1038/s41593-018-0242-x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang, L., K. Kuca, L. You, Y. Zhao, K. Musilek, E. Nepovimova, Q. Wu, W. Wu, and V. Adam. 2022. Signal transducer and activator of transcription 3 signaling in tumor immune evasion. Pharmacology and Therapeutics 230: 107969. https://doi.org/10.1016/j.pharmthera.2021.107969.

Article  CAS  PubMed  Google Scholar 

Shih, P.-C. 2022. The role of the STAT3 signaling transduction pathways in radioresistance. Pharmacology and Therapeutics 234: 108118. https://doi.org/10.1016/j.pharmthera.2022.108118.

Article  CAS  PubMed  Google Scholar 

Keren-Shaul, H., A. Spinrad, A. Weiner, O. Matcovitch-Natan, R. Dvir-Szternfeld, T.K. Ulland, E. David, K. Baruch, D. Lara-Astaiso, B. Toth, et al. 2017. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169: 1276-1290.e17. https://doi.org/10.1016/j.cell.2017.05.018.

Article  CAS  PubMed  Google Scholar 

Xue, C., Q. Yao, X. Gu, Q. Shi, X. Yuan, Q. Chu, Z. Bao, J. Lu, and L. Li. 2023. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduction and Targeted Therapy 8: 204. https://doi.org/10.1038/s41392-023-01468-7.

Article  PubMed  PubMed Central  Google Scholar 

Li, J., H. Liu, X. Wang, Y. Xia, J. Huang, T. Wang, Z. Lin, and N. Xiong. 2022. Melatonin ameliorates Parkinson’s disease via regulating microglia polarization in a RORα-dependent pathway. NPJ Parkinsons Disease 8: 90. https://doi.org/10.1038/s41531-022-00352-5.

Article  CAS  Google Scholar 

Hong, H., Y. Wang, M. Menard, J.A. Buckley, L. Zhou, L. Volpicelli-Daley, D.G. Standaert, H. Qin, and E.N. Benveniste. 2024. Suppression of the JAK/STAT pathway inhibits neuroinflammation in the line 61-PFF mouse model of Parkinson’s disease. Journal of Neuroinflammation 21: 216. https://doi.org/10.1186/s12974-024-03210-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, J., K.M. Jang, and K.-K. Park. 2022. Effects of Apamin on MPP+-Induced calcium overload and neurotoxicity by targeting CaMKII/ERK/P65/STAT3 signaling pathways in dopaminergic neuronal cells. International Journal of Molecular Sciences 23: 15255. https://doi.org/10.3390/ijms232315255.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luo, Y., T. Ali, Z. Liu, R. Gao, A. Li, C. Yang, L. Ling, L. He, and S. Li. 2023. EPO prevents neuroinflammation and relieves depression via JAK/STAT signaling. Life Sciences 333: 122102. https://doi.org/10.1016/j.lfs.2023.122102.

Article  CAS  PubMed  Google Scholar 

Morris, H.R., M.G. Spillantini, C.M. Sue, and C.H. Williams-Gray. 2024. The pathogenesis of Parkinson’s disease. Lancet 403: 293–304. https://doi.org/10.1016/S0140-6736(23)01478-2.

Article  CAS  PubMed  Google Scholar 

Kouli, A., C.B. Horne, and C.H. Williams-Gray. 2019. Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-Synucleinopathies. Brain, Behavior, and Immunity 81: 41–51. https://doi.org/10.1016/j.bbi.2019.06.042.

Article  CAS  PubMed  Google Scholar 

Gordon, R., E.A. Albornoz, D.C. Christie, M.R. Langley, V. Kumar, S. Mantovani, A.A.B. Robertson, M.S. Butler, D.B. Rowe, L.A. O’Neill, et al. 2018. Inflammasome inhibition prevents α-Synuclein pathology and dopaminergic neurodegeneration in mice. Science Translational Medicine 10: eaah4066. https://doi.org/10.1126/scitranslmed.aah4066.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kou, L., X. Chi, Y. Sun, C. Han, F. Wan, J. Hu, S. Yin, J. Wu, Y. Li, Q. Zhou, et al. 2022. The circadian clock protein rev-erbα provides neuroprotection and attenuates neuroinflammation against parkinson’s disease via the microglial NLRP3 inflammasome. Journal of Neuroinflammation 19: 133. https://doi.org/10.1186/s12974-022-02494-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Harding, O., E. Holzer, J.F. Riley, S. Martens, and E.L.F. Holzbaur. 2023. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Molecular Cell 83: 3188-3204.e7. https://doi.org/10.1016/j.molcel.2023.08.005.

Article  CAS 

Comments (0)

No login
gif