Watson NF, Fernandez CR (2021) Artificial intelligence and sleep: Advancing sleep medicine. Sleep Med Rev 59:101512
Bandyopadhyay A, Goldstein C (2023) Clinical applications of artificial intelligence in sleep medicine: a sleep clinician’s perspective. Sleep Breath 27(1):39–55
Iber C, Ancoli-Israel S, Chesson AL, Quan S (2017) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Westchester
Stephansen JB, Olesen AN, Olsen M, Ambati A, Leary EB, Moore HE, Carrillo O, Lin L, Han F, Yan H, Sun YL, Dauvilliers Y, Scholz S, Barateau L, Hogl B, Stefani A, Hong SC, Kim TW, Pizza F, Plazzi G, Vandi S, Antelmi E, Perrin D, Kuna ST, Schweitzer PK, Kushida C, Peppard PE, Sorensen HBD, Jennum P, Mignot E (2018) Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat Commun 9(1):5229
Article CAS PubMed PubMed Central Google Scholar
Ehrlich F, Sehr T, Brandt M, Schmidt M, Malberg H, Sedlmayr M, Goldammer M (2024) State-of-the-art sleep arousal detection evaluated on a comprehensive clinical dataset. Sci Rep 14(1):16239
Article CAS PubMed PubMed Central Google Scholar
Park MJ, Choi JH, Ha TK, Lee HD, Lee YJ (2024) 0521 validation of deep learning algorithm model in automatic scoring of the respiratory events in adult polysomnography. Sleep 47(Supplement_1):A223–A224
Penzel T, Behler P‑G, Von Buttlar M, Conradt R, Meier M, Moller A, Danker-Hopfe H (2003) Reliablitat der visuellen Schlafauswertung nach Rechtschaffen und Kales von acht Aufzeichnungen durch neun Schlaflabore. Reliability of Visual Evaluation of Sleep Stages According to Rechtschaffen and Kales from Eight Polysomnographs by Nine Sleep Centres. Somnologie 7(2):49–58
Basner M, Griefahn B, Penzel T (2008) Inter-rater agreement in sleep stage classification between centers with different backgrounds. Somnol Schlafforsch Schlafmed 12(1):75–84
Penzel T, Zhang X, Fietze I (2013) Inter-scorer reliability between sleep centers can teach us what to improve in the scoring rules. J Clin Sleep Med 9(1):89–91
Article PubMed PubMed Central Google Scholar
Penzel T (2022) Sleep scoring moving from visual scoring towards automated scoring. Sleep 45(10):zsac190
Article PubMed PubMed Central Google Scholar
Smith JR, Karacan I (1971) EEG sleep stage scoring by an automatic hybrid system. Electroencephalogr Clin Neurophysiol 31(3):231–237
Article CAS PubMed Google Scholar
Task Force “Auswertung polysomnographischer Ableitungen” der AG, Kommission Ausbildung der DGSM, Rodenbeck A, Danker-Hopfe H, Geisler P, Binder R, Lund R, Raschke F, Weeß H‑G, Schulz H (2014) Ergänzende Regeln zu Frequenzen und Graphoelementen der Schlafstadienanalyse. Somnol Schlafforsch Schlafmed 19:51–60
Boostani R, Karimzadeh F, Nami M (2017) A comparative review on sleep stage classification methods in patients and healthy individuals. Comput Methods Programs Biomed 140:77–91
Jansen C, Hodel S, Penzel T, Spott M, Krefting D (2018) Feature relevance in physiological networks for classification of obstructive sleep apnea. Physiol Meas 39(12):124003
Yue H, Chen Z, Guo W, Sun L, Dai Y, Wang Y, Ma W, Fan X, Wen W, Lei W (2024) Research and application of deep learning-based sleep staging: Data, modeling, validation, and clinical practice. Sleep Med Rev 74:101897
Goldammer M, Zaunseder S, Brandt MD, Malberg H, Gräßer F (2022) Investigation of automated sleep staging from cardiorespiratory signals regarding clinical applicability and robustness. Biomed Signal Process Control 71:103047
Supratak A, Dong H, Wu C, Guo Y (2017) Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans Neural Syst Rehabil Eng 25(11):1998–2008
Maurer MC, Metsch JM, Hempel P, Bender T, Spicher N, Hauschild A‑C (2024) Explainable artificial intelligence on biosignals for clinical decision support. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp 6597–6604
Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, Scardapane S, Spinelli I, Mahmud M, Hussain A (2024) Interpreting black-box models: a review on explainable artificial intelligence. Cogn Comput 16(1):45–74
Lee YJ, Lee JY, Cho JH, Choi JH (2022) Interrater reliability of sleep stage scoring: a meta-analysis. J Clin Sleep Med 18(1):193–202
Article PubMed PubMed Central Google Scholar
Zhang L, Fabbri D, Upender R, Kent D (2019) Automated sleep stage scoring of the Sleep Heart Health Study using deep neural networks. Sleep 42(11):zsz159
Article PubMed PubMed Central Google Scholar
Zhou W, Zhu H, Shen N, Chen H, Fu C, Yu H, Shu F, Chen C, Chen W (2023) A lightweight segmented attention network for sleep staging by fusing local characteristics and adjacent information. Ieee Trans Neural Syst Rehabil Eng 31:238–247
Zhu H, Zhou W, Fu C, Wu Y, Shen N, Shu F, Yu H, Chen W, Chen C (2023) Masksleepnet: a cross-modality adaptation neural network for heterogeneous signals processing in sleep staging. IEEE J Biomed Health Inform 27(5):2353–2364
Biswal S, Sun H, Goparaju B, Westover MB, Sun J, Bianchi MT (2018) Expert-level sleep scoring with deep neural networks. J Am Med Inform Assoc 25(12):1643–1650
Article PubMed PubMed Central Google Scholar
Ellis CA, Zhang R, Carbajal DA, Miller RL, Calhoun VD, Wang MD (2021) Explainable sleep stage classification with multimodal electrophysiology time-series. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp 2363–2366
Dutt M, Redhu S, Goodwin M, Omlin CW (2023) SleepXAI: An explainable deep learning approach for multi-class sleep stage identification. Appl Intell 53(13):16830–16843
Vaquerizo-Villar F, Gutiérrez-Tobal GC, Calvo E, Álvarez D, Kheirandish-Gozal L, del Campo F, Gozal D, Hornero R (2023) An explainable deep-learning model to stage sleep states in children and propose novel EEG-related patterns in sleep apnea. Comput Biol Med 165:107419
Zhang G‑Q, Cui L, Mueller R, Tao S, Kim M, Rueschman M, Mariani S, Mobley D, Redline S (2018) The national sleep research resource: towards a sleep data commons. J Am Med Inform Assoc 25(10):1351–1358
Article PubMed PubMed Central Google Scholar
Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O’Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM, Wahl PW (1997) The Sleep Heart Health Study: design, rationale, and methods. Sleep 20(12):1077–1085
Howe-Patterson M, Pourbabaee B, Benard F (2018) Automated detection of sleep arousals from polysomnography data using a dense convolutional neural network. In: 2018 Computing in Cardiology Conference (CinC), vol 45, pp 1–4
Sundararajan M, Taly A, Yan Q (2017) Axiomatic attribution for deep networks. In: Proceedings of the 34th International Conference on Machine Learning, vol 70, pp 3319–3328
Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Melnikov A, Kliushkina N, Araya C, Yan S, Reblitz-Richardson O (2020) Captum: A unified and generic model interpretability library for PyTorch. arXiv
Huijben IAM, Overeem S, van Gilst MM, van Sloun RJG (2024) Attention on sleep stage specific characteristics. In: 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 1–4
Bender T, Beinecke JM, Krefting D, Muller C, Dathe H, Seidler T, Spicher N, Hauschild A‑C (2023) Analysis of a Deep Learning Model for 12-Lead ECG Classification Reveals Learned Features Similar to Diagnostic Criteria. IEEE J Biomed Health Inform
Comments (0)