Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.
Article PubMed CAS Google Scholar
Bailly C, Bodet-Milin C, Bourgeois M, Gouard S, Ansquer C, Barbaud M, et al. Exploring Tumor Heterogeneity using PET imaging: the big picture. Cancers (Basel). 2019;11:1282. https://doi.org/10.3390/cancers11091282.
Article PubMed CAS Google Scholar
Hope TA, Allen-Auerbach M, Bodei L, Calais J, Dahlbom M, Dunnwald LK, et al. SNMMI Procedure Standard/EANM Practice Guideline for SSTR PET: imaging neuroendocrine tumors. J Nucl Med. 2023;64:204–10. https://doi.org/10.2967/jnumed.122.264860.
Article PubMed CAS Google Scholar
Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, et al. FAPI-PET/CT in Cancer Imaging: a potential Novel Molecule of the Century. Front Oncol. 2022;12:854658. https://doi.org/10.3389/fonc.2022.854658.
Article PubMed PubMed Central CAS Google Scholar
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomedical Eng. 2017;1:697–713. https://doi.org/10.1038/s41551-017-0131-8.
Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380:499–505. https://doi.org/10.1016/S0140-6736(12)60815-0.
Article PubMed PubMed Central Google Scholar
Shao YH, Tsai K, Kim S, Wu YJ, Demissie K. Exposure to Tomographic scans and Cancer risks. JNCI Cancer Spectr. 2020;4:pkz072. https://doi.org/10.1093/jncics/pkz072.
Foucault A, Ancelet S, Dreuil S, Caer-Lorho S, Le Ducou H, Brisse H, et al. Childhood cancer risks estimates following CT scans: an update of the French CT cohort study. Eur Radiol. 2022;32:5491–8. https://doi.org/10.1007/s00330-022-08602-z.
de Berrington A, Pasqual E, Veiga L. Epidemiological studies of CT scans and cancer risk: the state of the science. Br J Radiol. 2021;94:20210471. https://doi.org/10.1259/bjr.20210471.
Bosch de Basea Gomez M, Thierry-Chef I, Harbron R, Hauptmann M, Byrnes G, Bernier M-O, et al. Risk of hematological malignancies from CT radiation exposure in children, adolescents and young adults. Nat Med. 2023;29:3111–9. https://doi.org/10.1038/s41591-023-02620-0.
Article PubMed PubMed Central CAS Google Scholar
Hu Y, Liu G, Yu H, Wang Y, Li C, Tan H, et al. Feasibility of acquisitions using total-body PET/CT with an Ultra-low 18F-FDG activity. J Nucl Med. 2022;63:959–65. https://doi.org/10.2967/jnumed.121.262038.
Article PubMed PubMed Central CAS Google Scholar
Tan H, Cai D, Sui X, Qi C, Mao W, Zhang Y, et al. Investigating ultra-low-dose total-body 18F-FDG PET/CT in colorectal cancer: initial experience. Eur J Nucl Med Mol Imaging. 2022;49:1002–11. https://doi.org/10.1007/s00259-021-05537-3.
Liu G, Hu P, Yu H, Tan H, Zhang Y, Yin H, et al. Ultra-low-activity total-body dynamic PET imaging allows equal performance to full-activity PET imaging for investigating kinetic metrics of 18F-FDG in healthy volunteers. Eur J Nucl Med Mol Imaging. 2021;48:2373–83. https://doi.org/10.1007/s00259-020-05173-3.
Sachpekidis C, Pan L, Kopp-Schneider A, Weru V, Hassel JC, Dimitrakopoulou-Strauss A. Application of the long axial field-of-view PET/CT with low-dose [18F]FDG in melanoma. Eur J Nucl Med Mol Imaging. 2023;50:1158–67. https://doi.org/10.1007/s00259-022-06070-7.
Article PubMed CAS Google Scholar
Dong X, Wang T, Lei Y, Higgins K, Liu T, Curran WJ, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging. Phys Med Biol. 2019;64:215016. https://doi.org/10.1088/1361-6560/ab4eb7.
Article PubMed PubMed Central Google Scholar
Armanious K, Hepp T, Kustner T, Dittmann H, Nikolaou K, La Fougere C, et al. Independent attenuation correction of whole body [18F]FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 2020;10:53. https://doi.org/10.1186/s13550-020-00644-y.
Article PubMed PubMed Central Google Scholar
Kong L, Lian C, Huang D, Li Z, Hu Y, Zhou Q. Breaking the Dilemma of Medical Image-to-image Translation. 35th Conference on Neural Information Processing Systems (NeurIPS). Electr Network; 2021. pp. 1964–78.
Li Z, Zhang Q, Li H, Kong L, Wang H, Liang B, et al. Using RegGAN to generate synthetic CT images from CBCT images acquired with different linear accelerators. BMC Cancer. 2023;23:828. https://doi.org/10.1186/s12885-023-11274-7.
Article PubMed PubMed Central CAS Google Scholar
Wang H, Liu X, Kong L, Huang Y, Chen H, Ma X, et al. Improving CBCT image quality to the CT level using RegGAN in esophageal cancer adaptive radiotherapy. Strahlenther Onkol. 2023;199:485–97. https://doi.org/10.1007/s00066-022-02039-5.
Article PubMed PubMed Central Google Scholar
Shiri I, Arabi H, Geramifar P, Hajianfar G, Ghafarian P, Rahmim A, et al. Deep-JASC: joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network. Eur J Nucl Med Mol Imaging. 2020;47:2533–48. https://doi.org/10.1007/s00259-020-04852-5.
Li W, Huang Z, Chen Z, Jiang Y, Zhou C, Zhang X, et al. Learning CT-free attenuation-corrected total-body PET images through deep learning. Eur Radiol. 2024;34:5578–87. https://doi.org/10.1007/s00330-024-10647-1.
Article PubMed CAS Google Scholar
Guo R, Xue S, Hu J, Sari H, Mingels C, Zeimpekis K, et al. Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction. Nat Commun. 2022;13:5882. https://doi.org/10.1038/s41467-022-33562-9.
Article PubMed PubMed Central CAS Google Scholar
Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol. 2020;65:215010. https://doi.org/10.1088/1361-6560/aba5e9.
Article PubMed CAS Google Scholar
Li Q, Zhu X, Zou S, Zhang N, Liu X, Yang Y, et al. Eliminating CT radiation for clinical PET examination using deep learning. Eur J Radiol. 2022;154:110422. https://doi.org/10.1016/j.ejrad.2022.110422.
Rao F, Wu Z, Han L, Yang B, Han W, Zhu W. Delayed PET imaging using image synthesis network and nonrigid registration without additional CT scan. Med Phys. 2022;49:3233–45. https://doi.org/10.1002/mp.15574.
Yu H, Gu Y, Fan W, Gao Y, Wang M, Zhu X, et al. Expert consensus on oncological [18F]FDG total-body PET/CT imaging (version 1). Eur Radiol. 2023;33:615–26. https://doi.org/10.1007/s00330-022-08960-8.
Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649–57.
Tan H, Gu Y, Yu H, Hu P, Zhang Y, Mao W, et al. Total-body PET/CT: current applications and future perspectives. AJR Am J Roentgenol. 2020;215:325–37. https://doi.org/10.2214/AJR.19.22705.
Slovis TL. The ALARA concept in pediatric CT: myth or reality? Radiology. 2002;223:5–6. https://doi.org/10.1148/radiol.2231012100.
Liu G, Mao W, Yu H, Hu Y, Gu J, Shi H. One-stop [18F]FDG and [68Ga]Ga-DOTA-FAPI-04 total-body PET/CT examination with dual-low activity: a feasibility study. Eur J Nucl Med Mol Imaging. 2023;50:2271–81. https://doi.org/10.1007/s00259-023-06207-2.
Comments (0)