Associations of subclinical microcalcification and inflammation with carotid atheroma development: a dual-tracer PET/CT study

Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk. J Am Coll Cardiol. 2022;2022;80(25):2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005

Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23(6):3346. https://doi.org/10.3390/ijms23063346.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. https://doi.org/10.1016/j.cell.2011.04.005.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci. 2023;2023;24(9):7910–7910. https://doi.org/10.3390/ijms24097910

Demer LL, Tintut Y, Inflammatory. Metabolic, and Genetic Mechanisms of Vascular Calcification. Arterioscler Thromb Vasc Biol. 2014;2014;34(4):715–723. https://doi.org/10.1161/ATVBAHA.113.302070

Williams KJ. Eradicating Atherosclerotic Events by Targeting Early Subclinical Disease: It Is Time to Retire the Therapeutic Paradigm of Too Much, Too Late. Arterioscler Thromb Vasc Biol. 2024;2024;44(1):48–64. https://doi.org/10.1161/ATVBAHA.123.320065

Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4(5):537–48. https://doi.org/10.1016/j.jcmg.2011.03.006.

Article  PubMed  Google Scholar 

Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci. 2015;16(5):9749–69. https://doi.org/10.3390/ijms16059749.

Article  PubMed  PubMed Central  Google Scholar 

Bassir A, Raynor WY, Park PSU, Werner TJ, Alavi A, Revheim ME. Molecular imaging in atherosclerosis. Clin Transl Imaging. 2022;10(3):259–72. https://doi.org/10.1007/s40336-022-00483-y.

Article  Google Scholar 

Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atheroscler Thromb. 2018;25(4):294–303. https://doi.org/10.5551/jat.RV17020.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Evans NR, Tarkin JM, Chowdhury MM, Warburton EA, Rudd JHF. PET imaging of atherosclerotic disease: advancing Plaque Assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 2016;18(6):30. https://doi.org/10.1007/s11883-016-0584-3.

Article  PubMed  PubMed Central  Google Scholar 

Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J. 2016;37(39):2974–80. https://doi.org/10.1093/eurheartj/ehw147.

Article  PubMed  Google Scholar 

Sriranjan RS, Tarkin JM, Evans NR, Le EPV, Chowdhury MM, Rudd JHF. Atherosclerosis imaging using PET: Insights and applications. Br J Pharmacol. 2021;2021;178(11):2186–2203. https://doi.org/10.1111/bph.14868

Tawakol A, Migrino RQ, Bashian GG. In Vivo 18F-Fluorodeoxyglucose Positron Emission Tomography Imaging Provides a Noninvasive Measure of Carotid Plaque Inflammation in Patients. J Am Coll Cardiol. 2006;2006;48(9):1818–1824. https://doi.org/10.1016/j.jacc.2006.05.076

Creager MD, Hohl T, Hutcheson JD. 18F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circ Cardiovasc Imaging. 2019;10(1161/CIRCIMAGING.118.007835).

Derlin T, Janssen T, Salamon J, et al. Age-related differences in the activity of arterial mineral deposition and regional bone metabolism: a 18F-sodium fluoride positron emission tomography study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2015;26(1):199–207. https://doi.org/10.1007/s00198-014-2839-6.

Article  CAS  Google Scholar 

Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med off Publ Soc Nucl Med. 2011;52(7):1020–7. https://doi.org/10.2967/jnumed.111.087452.

Article  Google Scholar 

Kwiecinski J, Tzolos E, Adamson PD, et al. Coronary 18F-Sodium fluoride Uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol. 2020;75(24):3061–74. https://doi.org/10.1016/j.jacc.2020.04.046.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Conroy R. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;2003;24(11):987–1003. https://doi.org/10.1016/S0195-668X(03)00114-3

Levey AS, Stevens LA, Schmid CH. A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. 2009;2009;150(9):604–604. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579.

Article  PubMed  Google Scholar 

Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70. https://doi.org/10.1001/jama.285.22.2864.

Article  PubMed  CAS  Google Scholar 

Blomberg BA, Thomassen A, Takx RAP, et al. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol off Publ Am Soc Nucl Cardiol. 2014;21(3):588–97. https://doi.org/10.1007/s12350-014-9884-6.

Article  Google Scholar 

Blomberg BA, Thomassen A, Takx RAP, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol off Publ Am Soc Nucl Cardiol. 2014;21(2):293–304. https://doi.org/10.1007/s12350-013-9829-5.

Article  Google Scholar 

Moses WW. Fundamental Limits of Spatial Resolution in PET. Supplement 1. 2011;648:S236–40. https://doi.org/10.1016/j.nima.2010.11.092. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip.

Krejza J, Arkuszewski M, Kasner SE, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke. 2006;37(4):1103–5. https://doi.org/10.1161/01.STR.0000206440.48756.f7.

Article  PubMed  Google Scholar 

Blomberg BA, de Jong PA, Thomassen A, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging. 2017;44(2):249–58. https://doi.org/10.1007/s00259-016-3552-9.

Article  PubMed  Google Scholar 

Chou TH, Rimmerman ET, Patel S, et al. Vessel-by-vessel analysis of lower extremity 18F-NaF PET/CT imaging quantifies diabetes- and chronic kidney disease-induced active microcalcification in patients with peripheral arterial disease. EJNMMI Res. 2023;13:3. https://doi.org/10.1186/s13550-023-00951-0.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Blomberg BA, Thomassen A, de Jong PA, et al. Impact of personal characteristics and technical factors on quantification of Sodium 18F-Fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med off Publ Soc Nucl Med. 2015;56(10):1534–40. https://doi.org/10.2967/jnumed.115.159798.

Article  CAS  Google Scholar 

Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med off Publ Soc Nucl Med. 2015;56(4):552–9. https://doi.org/10.2967/jnumed.114.142596.

Article  CAS  Google Scholar 

Derlin T, Wisotzki C, Richter U, et al. In Vivo Imaging of Mineral Deposition in Carotid Plaque using 18F-Sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8. https://doi.org/10.2967/jnumed.110.081208.

Article  PubMed  Google Scholar 

Lee DH, Lee SJ, Lee DJ. Carotid Artery FDG Uptake May Serve as a Biomarker for Cardiovascular Risk Stratification in Asymptomatic Adults. Nucl Med Mol Imaging. 2014;2014;48(3):196–202. https://doi.org/10.1007/s13139-014-0277-1

Arani LS, Gharavi MH, Zadeh MZ, et al. Association between age, uptake of 18F-fluorodeoxyglucose and of 18F-sodium fluoride, as cardiovascular risk factors in the abdominal aorta. Hell J Nucl Med. 2019;22(1):14–9. https://doi.org/10.1967/s002449910954.

Article  PubMed  Google Scholar 

Gonuguntla K, Rojulpote C, Patil S, et al. Utilization of NaF-PET/CT in assessing global cardiovascular calcification using CHADS2 and CHADS2-VASc scoring systems in high risk individuals for cardiovascular disease. Am J Nucl Med Mol Imaging. 2020;10(6):293–300.

PubMed  PubMed Central  CAS  Google Scholar 

Castro SA, Muser D, Lee H, et al. Carotid artery molecular calcification assessed by [18F]fluoride PET/CT: correlation with cardiovascular and thromboembolic risk factors. Eur Radiol. 2021;31(10):8050–9. https://doi.org/10.1007/s00330-021-07917-7.

Article  PubMed  CAS  Google Scholar 

Wang B, Xu Y, Wan P, et al. Right atrial fluorodeoxyglucose uptake is a risk factor for stroke and improves prediction of Stroke above the CHA2DS2-VASc score in patients with Atrial Fibrillation. Front Cardiovasc Med. 2022;9:862000. https://doi.org/10.3389/fcvm.2022.862000.

Article  PubMed  PubMed Central  CAS 

Comments (0)

No login
gif