Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The Global Burden of Cardiovascular Diseases and Risk. J Am Coll Cardiol. 2022;2022;80(25):2361–2371. https://doi.org/10.1016/j.jacc.2022.11.005
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis. Int J Mol Sci. 2022;23(6):3346. https://doi.org/10.3390/ijms23063346.
Article PubMed PubMed Central CAS Google Scholar
Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301.
Article PubMed PubMed Central CAS Google Scholar
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell. 2011;145(3):341–55. https://doi.org/10.1016/j.cell.2011.04.005.
Article PubMed PubMed Central CAS Google Scholar
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci. 2023;2023;24(9):7910–7910. https://doi.org/10.3390/ijms24097910
Demer LL, Tintut Y, Inflammatory. Metabolic, and Genetic Mechanisms of Vascular Calcification. Arterioscler Thromb Vasc Biol. 2014;2014;34(4):715–723. https://doi.org/10.1161/ATVBAHA.113.302070
Williams KJ. Eradicating Atherosclerotic Events by Targeting Early Subclinical Disease: It Is Time to Retire the Therapeutic Paradigm of Too Much, Too Late. Arterioscler Thromb Vasc Biol. 2024;2024;44(1):48–64. https://doi.org/10.1161/ATVBAHA.123.320065
Voros S, Rinehart S, Qian Z, et al. Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging. 2011;4(5):537–48. https://doi.org/10.1016/j.jcmg.2011.03.006.
Steinl DC, Kaufmann BA. Ultrasound imaging for risk assessment in atherosclerosis. Int J Mol Sci. 2015;16(5):9749–69. https://doi.org/10.3390/ijms16059749.
Article PubMed PubMed Central Google Scholar
Bassir A, Raynor WY, Park PSU, Werner TJ, Alavi A, Revheim ME. Molecular imaging in atherosclerosis. Clin Transl Imaging. 2022;10(3):259–72. https://doi.org/10.1007/s40336-022-00483-y.
Shioi A, Ikari Y. Plaque calcification during atherosclerosis progression and regression. J Atheroscler Thromb. 2018;25(4):294–303. https://doi.org/10.5551/jat.RV17020.
Article PubMed PubMed Central CAS Google Scholar
Evans NR, Tarkin JM, Chowdhury MM, Warburton EA, Rudd JHF. PET imaging of atherosclerotic disease: advancing Plaque Assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 2016;18(6):30. https://doi.org/10.1007/s11883-016-0584-3.
Article PubMed PubMed Central Google Scholar
Joseph P, Tawakol A. Imaging atherosclerosis with positron emission tomography. Eur Heart J. 2016;37(39):2974–80. https://doi.org/10.1093/eurheartj/ehw147.
Sriranjan RS, Tarkin JM, Evans NR, Le EPV, Chowdhury MM, Rudd JHF. Atherosclerosis imaging using PET: Insights and applications. Br J Pharmacol. 2021;2021;178(11):2186–2203. https://doi.org/10.1111/bph.14868
Tawakol A, Migrino RQ, Bashian GG. In Vivo 18F-Fluorodeoxyglucose Positron Emission Tomography Imaging Provides a Noninvasive Measure of Carotid Plaque Inflammation in Patients. J Am Coll Cardiol. 2006;2006;48(9):1818–1824. https://doi.org/10.1016/j.jacc.2006.05.076
Creager MD, Hohl T, Hutcheson JD. 18F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circ Cardiovasc Imaging. 2019;10(1161/CIRCIMAGING.118.007835).
Derlin T, Janssen T, Salamon J, et al. Age-related differences in the activity of arterial mineral deposition and regional bone metabolism: a 18F-sodium fluoride positron emission tomography study. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2015;26(1):199–207. https://doi.org/10.1007/s00198-014-2839-6.
Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med off Publ Soc Nucl Med. 2011;52(7):1020–7. https://doi.org/10.2967/jnumed.111.087452.
Kwiecinski J, Tzolos E, Adamson PD, et al. Coronary 18F-Sodium fluoride Uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol. 2020;75(24):3061–74. https://doi.org/10.1016/j.jacc.2020.04.046.
Article PubMed PubMed Central CAS Google Scholar
Conroy R. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;2003;24(11):987–1003. https://doi.org/10.1016/S0195-668X(03)00114-3
Levey AS, Stevens LA, Schmid CH. A New Equation to Estimate Glomerular Filtration Rate. Ann Intern Med. 2009;2009;150(9):604–604. https://doi.org/10.7326/0003-4819-150-9-200905050-00006
D’Agostino RB, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation. 2008;117(6):743–53. https://doi.org/10.1161/CIRCULATIONAHA.107.699579.
Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation. JAMA. 2001;285(22):2864–70. https://doi.org/10.1001/jama.285.22.2864.
Article PubMed CAS Google Scholar
Blomberg BA, Thomassen A, Takx RAP, et al. Delayed 18F-fluorodeoxyglucose PET/CT imaging improves quantitation of atherosclerotic plaque inflammation: results from the CAMONA study. J Nucl Cardiol off Publ Am Soc Nucl Cardiol. 2014;21(3):588–97. https://doi.org/10.1007/s12350-014-9884-6.
Blomberg BA, Thomassen A, Takx RAP, et al. Delayed sodium 18F-fluoride PET/CT imaging does not improve quantification of vascular calcification metabolism: results from the CAMONA study. J Nucl Cardiol off Publ Am Soc Nucl Cardiol. 2014;21(2):293–304. https://doi.org/10.1007/s12350-013-9829-5.
Moses WW. Fundamental Limits of Spatial Resolution in PET. Supplement 1. 2011;648:S236–40. https://doi.org/10.1016/j.nima.2010.11.092. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip.
Krejza J, Arkuszewski M, Kasner SE, et al. Carotid artery diameter in men and women and the relation to body and neck size. Stroke. 2006;37(4):1103–5. https://doi.org/10.1161/01.STR.0000206440.48756.f7.
Blomberg BA, de Jong PA, Thomassen A, et al. Thoracic aorta calcification but not inflammation is associated with increased cardiovascular disease risk: results of the CAMONA study. Eur J Nucl Med Mol Imaging. 2017;44(2):249–58. https://doi.org/10.1007/s00259-016-3552-9.
Chou TH, Rimmerman ET, Patel S, et al. Vessel-by-vessel analysis of lower extremity 18F-NaF PET/CT imaging quantifies diabetes- and chronic kidney disease-induced active microcalcification in patients with peripheral arterial disease. EJNMMI Res. 2023;13:3. https://doi.org/10.1186/s13550-023-00951-0.
Article PubMed PubMed Central CAS Google Scholar
Blomberg BA, Thomassen A, de Jong PA, et al. Impact of personal characteristics and technical factors on quantification of Sodium 18F-Fluoride uptake in human arteries: prospective evaluation of healthy subjects. J Nucl Med off Publ Soc Nucl Med. 2015;56(10):1534–40. https://doi.org/10.2967/jnumed.115.159798.
Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: suggestions for improvement. J Nucl Med off Publ Soc Nucl Med. 2015;56(4):552–9. https://doi.org/10.2967/jnumed.114.142596.
Derlin T, Wisotzki C, Richter U, et al. In Vivo Imaging of Mineral Deposition in Carotid Plaque using 18F-Sodium fluoride PET/CT: correlation with atherogenic risk factors. J Nucl Med. 2011;52(3):362–8. https://doi.org/10.2967/jnumed.110.081208.
Lee DH, Lee SJ, Lee DJ. Carotid Artery FDG Uptake May Serve as a Biomarker for Cardiovascular Risk Stratification in Asymptomatic Adults. Nucl Med Mol Imaging. 2014;2014;48(3):196–202. https://doi.org/10.1007/s13139-014-0277-1
Arani LS, Gharavi MH, Zadeh MZ, et al. Association between age, uptake of 18F-fluorodeoxyglucose and of 18F-sodium fluoride, as cardiovascular risk factors in the abdominal aorta. Hell J Nucl Med. 2019;22(1):14–9. https://doi.org/10.1967/s002449910954.
Gonuguntla K, Rojulpote C, Patil S, et al. Utilization of NaF-PET/CT in assessing global cardiovascular calcification using CHADS2 and CHADS2-VASc scoring systems in high risk individuals for cardiovascular disease. Am J Nucl Med Mol Imaging. 2020;10(6):293–300.
PubMed PubMed Central CAS Google Scholar
Castro SA, Muser D, Lee H, et al. Carotid artery molecular calcification assessed by [18F]fluoride PET/CT: correlation with cardiovascular and thromboembolic risk factors. Eur Radiol. 2021;31(10):8050–9. https://doi.org/10.1007/s00330-021-07917-7.
Article PubMed CAS Google Scholar
Wang B, Xu Y, Wan P, et al. Right atrial fluorodeoxyglucose uptake is a risk factor for stroke and improves prediction of Stroke above the CHA2DS2-VASc score in patients with Atrial Fibrillation. Front Cardiovasc Med. 2022;9:862000. https://doi.org/10.3389/fcvm.2022.862000.
Comments (0)