Striatal dopamine transporter uptake predicts neuronal hypometabolism and visuospatial function in Parkinson’s disease

Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson disease-associated cognitive impairment. Nat Reviews Disease Primers. 2021;7:1–21.

Google Scholar 

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Reviews Disease Primers. 2017;3:1–21.

Google Scholar 

Mitchell T, Lehéricy S, Chiu SY, Strafella AP, Stoessl AJ, Vaillancourt DE. Emerging neuroimaging biomarkers across disease stage in Parkinson disease: a review. JAMA Neurol. 2021;78:1262–72.

Article  PubMed  PubMed Central  Google Scholar 

Meles SK, Teune LK, de Jong BM, Dierckx RA, Leenders KL. Metabolic imaging in Parkinson disease. J Nucl Med. 2017;58:23–8.

Article  CAS  PubMed  Google Scholar 

Mattis PJ, Niethammer M, Sako W, Tang CC, Nazem A, Gordon ML, et al. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases. Neurology. 2016;87:1925–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang C, Tang C, Feigin A, Lesser M, Ma Y, Pourfar M, et al. Changes in network activity with the progression of Parkinson’s disease. Brain. 2007;130:1834–46.

Article  PubMed  Google Scholar 

Lu J, Ge J, Chen K, Sun Y, Liu F, Yu H, et al. Consistent abnormalities in metabolic patterns of Lewy body dementias. Mov Disord. 2022;37:1861–71.

Article  CAS  PubMed  Google Scholar 

Sasikumar S, Strafella AP. Imaging mild cognitive impairment and dementia in Parkinson’s disease. Front Neurol. 2020;11:47.

Article  PubMed  PubMed Central  Google Scholar 

Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol. 2017;16:66–75.

Article  CAS  PubMed  Google Scholar 

Niethammer M, Tang CC, Ma Y, Mattis PJ, Ko JH, Dhawan V, et al. Parkinson’s disease cognitive network correlates with caudate dopamine. NeuroImage. 2013;78:204–9.

Article  CAS  PubMed  Google Scholar 

Sung C, Oh SJ, Kim JS. Imaging Procedure and clinical studies of [18F] FP-CIT PET. Nuclear Med Mol Imaging. 2024:1–18.

Booth S, Ko JH. Radionuclide Imaging of the neuroanatomical and neurochemical substrate of cognitive decline in Parkinson’s Disease. Nuclear Med Mol Imaging. 2024:1–14.

Nagano-Saito A, Kato T, Arahata Y, Washimi Y, Nakamura A, Abe Y, et al. Cognitive- and motor-related regions in Parkinson’s disease: FDOPA and FDG PET studies. NeuroImage. 2004;22:553–61. https://doi.org/10.1016/j.neuroimage.2004.01.030.

Article  PubMed  Google Scholar 

Pasquini J, Durcan R, Wiblin L, Stokholm MG, Rochester L, Brooks DJ, et al. Clinical implications of early caudate dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2019;90:1098–104.

Article  PubMed  Google Scholar 

Chung SJ, Yoo HS, Oh JS, Kim JS, Ye BS, Sohn YH, et al. Effect of striatal dopamine depletion on cognition in de novo Parkinson’s disease. Parkinsonism Relat Disord. 2018;51:43–8. https://doi.org/10.1016/j.parkreldis.2018.02.048.

Article  PubMed  Google Scholar 

Fox PT, Mintun MA, Reiman EM, Raichle ME. Enhanced detection of focal brain responses using intersubject averaging and change-distribution analysis of subtracted PET images. J Cereb Blood Flow Metab. 1988;8:642–53. https://doi.org/10.1038/jcbfm.1988.111.

Article  CAS  PubMed  Google Scholar 

Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann BS, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy Bodies. Mov Disord. 2020;35:595–605. https://doi.org/10.1002/mds.27945.

Article  CAS  PubMed  Google Scholar 

Chung SJ, Kim YJ, Kim YJ, Lee HS, Jeong SH, Hong J-M, et al. Association between White Matter Networks and the pattern of Striatal dopamine depletion in patients with Parkinson Disease. Neurology. 2022;99:e2672–82. https://doi.org/10.1212/wnl.0000000000201269.

Article  CAS  PubMed  Google Scholar 

Jeong SH, Kim SH, Park CW, Lee HS, Lee PH, Kim YJ, et al. Differential implications of cerebral hypoperfusion and hyperperfusion in Parkinson’s disease. Mov Disord. 2023;38:1881–90.

Article  CAS  PubMed  Google Scholar 

Jeong SH, Lee E-C, Chung SJ, Lee HS, Jung JH, Sohn YH, et al. Local striatal volume and motor reserve in drug-naïve Parkinson’s disease. Npj Parkinson’s Disease. 2022;8:168. https://doi.org/10.1038/s41531-022-00429-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee Yg, Jeon S, Park M, Kang SW, Yoon SH, Baik K, et al. Effects of Alzheimer and Lewy body disease pathologies on brain metabolism. Ann Neurol. 2022;91:853–63.

Article  Google Scholar 

Ryu HJ, Yang DW. The Seoul neuropsychological screening battery (SNSB) for comprehensive neuropsychological assessment. Dement Neurocognitive Disorders. 2023;22:1.

Article  Google Scholar 

Firth NC, Primativo S, Brotherhood E, Young AL, Yong KX, Crutch SJ, et al. Sequences of cognitive decline in typical Alzheimer’s disease and posterior cortical atrophy estimated using a novel event-based model of disease progression. Alzheimer’s Dement. 2020;16:965–73.

Article  Google Scholar 

Young AL, Oxtoby NP, Garbarino S, Fox NC, Barkhof F, Schott JM, et al. Data-driven modelling of neurodegenerative disease progression: thinking outside the black box. Nat Rev Neurosci. 2024;25:111–30.

Article  CAS  PubMed  Google Scholar 

Berron D, Vogel JW, Insel PS, Pereira JB, Xie L, Wisse LE, et al. Early stages of tau pathology and its associations with functional connectivity, atrophy and memory. Brain. 2021;144:2771–83.

Article  PubMed  PubMed Central  Google Scholar 

Young AL, Oxtoby NP, Daga P, Cash DM, Fox NC, Ourselin S, et al. A data-driven model of biomarker changes in sporadic Alzheimer’s disease. Brain. 2014;137:2564–77.

Article  PubMed  PubMed Central  Google Scholar 

Oxtoby NP, Leyland L-A, Aksman LM, Thomas GE, Bunting EL, Wijeratne PA, et al. Sequence of clinical and neurodegeneration events in Parkinson’s disease progression. Brain. 2021;144:975–88.

Article  PubMed  PubMed Central  Google Scholar 

Fonteijn HM, Modat M, Clarkson MJ, Barnes J, Lehmann M, Hobbs NZ, et al. An event-based model for disease progression and its application in familial Alzheimer’s disease and Huntington’s disease. NeuroImage. 2012;60:1880–9.

Article  PubMed  Google Scholar 

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Google Scholar 

Muller ML, Bohnen NI. Cholinergic dysfunction in Parkinson’s disease. Curr Neurol Neurosci Rep. 2013;13:377. https://doi.org/10.1007/s11910-013-0377-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–22. https://doi.org/10.1212/01.wnl.0000191154.78131.f6.

Article  CAS  PubMed  Google Scholar 

Meles SK, Renken RJ, Pagani M, Teune LK, Arnaldi D, Morbelli S, et al. Abnormal pattern of brain glucose metabolism in Parkinson’s disease: replication in three European cohorts. Eur J Nucl Med Mol Imaging. 2020;47:437–50.

Article  CAS  PubMed  Google Scholar 

Baba T, Hosokai Y, Nishio Y, Kikuchi A, Hirayama K, Suzuki K, et al. Longitudinal study of cognitive and cerebral metabolic changes in Parkinson’s disease. J Neurol Sci. 2017;372:288–93. https://doi.org/10.1016/j.jns.2016.11.068.

Article  CAS  PubMed  Google Scholar 

Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55. https://doi.org/10.2967/jnumed.111.089946.

Article  CAS 

Comments (0)

No login
gif