Comparison of Syn T2-FLAIR and Syn DIR with conventional T2-FLAIR in displaying white matter hyperintensities in migraine patients

Huo J, Wan M, Li N et al (2022) Small Demyelination of the Cortex May Be a Potential Marker for the Right-to-Left Shunt of the Heart. Brain Sci 12:884. https://doi.org/10.3390/brainsci12070884

Article  PubMed  PubMed Central  Google Scholar 

Yu S, Liu R, Zhao G et al (2012) The Prevalence and Burden of Primary Headaches in China: A Population-Based Door-to-Door Survey. Headache: The Journal of Head and Face Pain 52:582–91. https://doi.org/10.1111/j.1526-4610.2011.02061.x

Article  Google Scholar 

Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 26(341):c3666. https://doi.org/10.1136/bmj.c3666

Article  Google Scholar 

Li J, Zhao Y (2021) Magnetic Resonance Imaging and Clinical Features of the Demyelinating Degeneration of White Matter in Young Patients. Int J Gen Med 14:3177–3186. https://doi.org/10.2147/IJGM.S302587

Article  PubMed  PubMed Central  Google Scholar 

Lee MJ, Park B, Cho S et al (2019) Cerebrovascular reactivity as a determinant of deep white matter hyperintensities in migraine. Neurology 92:e342–e350. https://doi.org/10.1212/WNL.0000000000006822

Article  PubMed  CAS  Google Scholar 

Prins ND, Scheltens P (2015) White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 11:157–165. https://doi.org/10.1038/nrneurol.2015.10

Article  PubMed  Google Scholar 

Andica C, Hagiwara A, Hori M et al (2019) Review of synthetic MRI in pediatric brains: Basic principle of MR quantification, its features, clinical applications, and limitations. J Neuroradiol 46:268–275. https://doi.org/10.1016/j.neurad.2019.02.005

Article  PubMed  Google Scholar 

Matsuda M, Tsuda T, Ebihara R et al (2021) Triple-negative breast cancer on contrast-enhanced MRI and synthetic MRI: A comparison with non-triple-negative breast carcinoma. Eur J Radiol 142:109838. https://doi.org/10.1016/j.ejrad.2021.109838

Article  PubMed  Google Scholar 

Gao W, Yang Q, Li X et al (2022) Synthetic MRI with quantitative mappings for identifying receptor status, proliferation rate, and molecular subtypes of breast cancer. Eur J Radiol 148:110168. https://doi.org/10.1016/j.ejrad.2022.110168

Article  PubMed  Google Scholar 

Zhang W, Zhu J, Xu X et al (2020) Synthetic MRI of the lumbar spine at 3.0 T: feasibility and image quality comparison with conventional MRI. Acta Radiol 61:461–470. https://doi.org/10.1177/0284185119871670

Article  PubMed  Google Scholar 

Kumar NM, Fritz B, Stern SE et al (2018) Synthetic MRI of the Knee: Phantom Validation and Comparison with Conventional MRI. Radiology 289:465–477. https://doi.org/10.1148/radiol.2018173007

Article  PubMed  Google Scholar 

Arita Y, Akita H, Fujiwara H et al (2022) Synthetic magnetic resonance imaging for primary prostate cancer evaluation: Diagnostic potential of a non-contrast-enhanced bi-parametric approach enhanced with relaxometry measurements. Eur J Radiol Open 9:100403. https://doi.org/10.1016/j.ejro.2022.100403

Article  PubMed  PubMed Central  Google Scholar 

Cai Q, Wen Z, Huang Y et al (2021) Investigation of Synthetic Magnetic Resonance Imaging Applied in the Evaluation of the Tumor Grade of Bladder Cancer. J Magn Reson Imaging 54:1989–1997. https://doi.org/10.1002/jmri.27770

Article  PubMed  Google Scholar 

Fritz J (2019) T2 Mapping without Additional Scan Time Using Synthetic Knee MRI. Radiology 293:631–632. https://doi.org/10.1148/radiol.2019192046

Article  PubMed  Google Scholar 

Yang J, Song Y, Huang J et al (2022) A pilot study of the association between leukoaraiosis and cerebral atherosclerosis using synthetic magnetic resonance imaging. Acta Radiol 63:1546–1553. https://doi.org/10.1177/02841851211044970

Article  PubMed  Google Scholar 

Hagiwara A, Fujimoto K, Kamagata K et al (2021) Age-Related Changes in Relaxation Times, Proton Density, Myelin, and Tissue Volumes in Adult Brain Analyzed by 2-Dimensional Quantitative Synthetic Magnetic Resonance Imaging. Invest Radiol 56:163–172. https://doi.org/10.1097/RLI.0000000000000720

Article  PubMed  Google Scholar 

Kang KM, Choi SH, Hwang M et al (2018) Application of Synthetic MRI for Direct Measurement of Magnetic Resonance Relaxation Time and Tumor Volume at Multiple Time Points after Contrast Administration: Preliminary Results in Patients with Brain Metastasis. Korean J Radiol 19:783–791. https://doi.org/10.3348/kjr.2018.19.4.783

Article  PubMed  PubMed Central  Google Scholar 

Zhang C, Zhao X, Cheng M et al (2021) The Effect of Intraventricular Hemorrhage on Brain Development in Premature Infants: A Synthetic MRI Study. Front Neurol 12:721312. https://doi.org/10.3389/fneur.2021.721312

Article  PubMed  PubMed Central  Google Scholar 

Wang Q, Wang G, Sun Q et al (2021) Application of MAGnetic resonance imaging compilation in acute ischemic stroke. World J Clin Cases 9:10828–10837. https://doi.org/10.12998/wjcc.v9.i35.10828

Article  PubMed  PubMed Central  Google Scholar 

Bao S, Liao C, Xu N et al (2022) Prediction of brain age using quantitative parameters of synthetic magnetic resonance imaging. Front Aging Neurosci 14:963668. https://doi.org/10.3389/fnagi.2022.963668

Article  PubMed  PubMed Central  Google Scholar 

Nasser NS, Sharma K, Mehta PM et al (2023) Estimation of white matter hyperintensities with synthetic MRI myelin volume fraction in patients with multiple sclerosis and non-multiple-sclerosis white matter hyperintensities: A pilot study among the Indian population. AIMS Neurosci 10:144–153. https://doi.org/10.3934/Neuroscience.2023011

Article  PubMed  PubMed Central  Google Scholar 

Nelson F, Poonawalla AH, Hou P et al (2007) Improved Identification of Intracortical Lesions in Multiple Sclerosis with Phase-Sensitive Inversion Recovery in Combination with Fast Double Inversion Recovery MR Imaging. AJNR Am J Neuroradiol 28:1645–1649. https://doi.org/10.3174/ajnr.A0645

Article  PubMed  PubMed Central  CAS  Google Scholar 

Traboulsee A, Simon JH, Stone L et al (2016) Revised Recommendations of the Consortium of MS Centers Task Force for a Standardized MRI Protocol and Clinical Guidelines for the Diagnosis and Follow-Up of Multiple Sclerosis. AJNR Am J Neuroradiol 37:394–401. https://doi.org/10.3174/ajnr.A4539

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wattjes MP, Lutterbey GG, Gieseke J et al (2007) Double Inversion Recovery Brain Imaging at 3T: Diagnostic Value in the Detection of Multiple Sclerosis Lesions. Am J Neuroradiol 28:54–59

PubMed  PubMed Central  CAS  Google Scholar 

Kumar P, Kijima Y, West BH et al (2019) The Connection Between Patent Foramen Ovale and Migraine. Neuroimaging Clin N Am 29:261–270. https://doi.org/10.1016/j.nic.2019.01.006

Article  PubMed  Google Scholar 

Qu H, Yang S, Yao Z et al (2022) Association of Headache Disorders and the Risk of Dementia: Meta-Analysis of Cohort Studies. Front Aging Neurosci 14:804341. https://doi.org/10.3389/fnagi.2022.804341

Article  PubMed  PubMed Central  Google Scholar 

Zhang S, Liu H, Shi T (2022) Association between migraine and risk of stroke: a systematic review and meta-analysis. Neurol Sci 43:4875–4889. https://doi.org/10.1007/s10072-022-06074-z

Article  PubMed  Google Scholar 

Zhang W, Cheng Z, Fu F et al (2023) Prevalence and clinical characteristics of white matter hyperintensities in Migraine: A meta-analysis. Neuroimage Clin 37:103312. https://doi.org/10.1016/j.nicl.2023.103312

Article  PubMed  PubMed Central  Google Scholar 

Hagiwara A, Hori M, Yokoyama K et al (2017) Synthetic MRI in the Detection of Multiple Sclerosis Plaques. AJNR Am J Neuroradiol 38:257–263. https://doi.org/10.3174/ajnr.A5012

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee D, Moon W, Ye JC (2020) Assessing the importance of magnetic resonance contrasts using collaborative generative adversarial networks. Nat Mach Intell 2:34–42. https://doi.org/10.1038/s42256-019-0137-x

Comments (0)

No login
gif