Galvani, L. De viribus electricitatis in motu musculari commentarius. Bon Sci. Art. Inst. Acad. Comm. 7, 363–418 (1791).
Cole, K. S. & Curtis, H. J. Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649–670 (1939).
Article CAS PubMed PubMed Central Google Scholar
Hodgkin, A. L. & Huxley, A. F. Action potentials recorded from inside a nerve fibre. Nature 144, 710–711 (1939).
Hodgkin, A. L. & Huxley, A. F. Resting and action potentials in single nerve fibres. J. Physiol. 104, 176–195 (1945).
Article CAS PubMed PubMed Central Google Scholar
Hodgkin, A. L. & Huxley, A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952).
Article CAS PubMed PubMed Central Google Scholar
Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).
Article CAS PubMed PubMed Central Google Scholar
Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).
Article CAS PubMed Google Scholar
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflug. Arch. 391, 85–100 (1981).
Verkhratsky, A., Krishtal, O. A. & Petersen, O. H. From Galvani to patch clamp: the development of electrophysiology. Pflug. Arch. 453, 233–247 (2006). This review article summarizes the study history of biological electricity.
Strazzullo, P. & Leclercq, C. Sodium. Adv. Nutr. 5, 188–190 (2014).
Article PubMed PubMed Central Google Scholar
Zacchia, M., Abategiovanni, M. L., Stratigis, S. & Capasso, G. Potassium: from physiology to clinical implications. Kidney Dis. 2, 72–79 (2016).
Ringer, S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. 4, 29–42.23 (1883).
Article CAS PubMed PubMed Central Google Scholar
Reuter, H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J. Physiol. 192, 479–492 (1967).
Article CAS PubMed PubMed Central Google Scholar
Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).
Article CAS PubMed Google Scholar
Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007).
Article CAS PubMed Google Scholar
Hursh, J. B. Conduction velocity and diameter of nerve fibers. Am. J. Physiol. 127, 131–139 (1939).
Waxman, S. G. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3, 141–150 (1980).
Article CAS PubMed Google Scholar
Hille, B. Ion Channels of Excitable Membranes 3rd edn (Sinauer, 2001).
Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007).
Article CAS PubMed Google Scholar
Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).
Article CAS PubMed Google Scholar
Bagal, S. K. et al. Ion channels as therapeutic targets: a drug discovery perspective. J. Med. Chem. 56, 593–624 (2013).
Article CAS PubMed Google Scholar
Frazao, B., Vasconcelos, V. & Antunes, A. Sea anemone (Cnidaria, Anthozoa, Actiniaria) toxins: an overview. Mar. Drugs 10, 1812–1851 (2012).
Article CAS PubMed PubMed Central Google Scholar
Llewellyn, L. E. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat. Prod. Rep. 23, 200–222 (2006).
Article CAS PubMed Google Scholar
Dolphin, A. C. A short history of voltage-gated calcium channels. Br. J. Pharmacol. 147, S56–S62 (2006). This brief review elegantly summarizes the research history and general knowledge of voltage-gated calcium channels.
Article CAS PubMed PubMed Central Google Scholar
Jan, L. Y. & Jan, Y. N. Voltage-gated potassium channels and the diversity of electrical signalling. J. Physiol. 590, 2591–2599 (2012).
Article CAS PubMed PubMed Central Google Scholar
Huang, X. & Jan, L. Y. Targeting potassium channels in cancer. J. Cell Biol. 206, 151–162 (2014).
Article CAS PubMed PubMed Central Google Scholar
Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015). This is a comprehensive and updated review on voltage-gated calcium channels.
Article CAS PubMed PubMed Central Google Scholar
Ahern, C. A., Payandeh, J., Bosmans, F. & Chanda, B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J. Gen. Physiol. 147, 1–24 (2016). This comprehensive review affords an updated overview of voltage-gated sodium channels.
Article CAS PubMed PubMed Central Google Scholar
Alsaloum, M., Higerd, G. P., Effraim, P. R. & Waxman, S. G. Status of peripheral sodium channel blockers for non-addictive pain treatment. Nat. Rev. Neurol. 16, 689–705 (2020). This is a timely review that summarizes efforts on drug discovery targeting peripheral voltage-gated sodium channels for pain relief.
Article CAS PubMed Google Scholar
Meisler, M. H., Hill, S. F. & Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat. Rev. Neurosci. 22, 152–166 (2021).
Article CAS PubMed PubMed Central Google Scholar
Brunklaus, A. et al. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 145, 4275–4286 (2022).
Article PubMed PubMed Central Google Scholar
Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).
Comments (0)