Pitkänen A, Engel J (2014) Past and present definitions of epileptogenesis and its biomarkers. Neurotherapeutics 11:231–241. https://doi.org/10.1007/s13311-014-0257-2
Article CAS PubMed PubMed Central Google Scholar
Sharma AK, Reams RY, Jordan WH, Miller MA, Thacker HL, Snyder PW (2007) Mesial temporal lobe epilepsy: pathogenesis, induced rodent models and lesions. Toxicol Pathol 35:984–999. https://doi.org/10.1080/01926230701748305
Pohlentz MS, Müller P, Cases-Cunillera S, Opitz T, Surges R, Hamed M et al (2022) Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy. PLoS ONE 17:e0271995. https://doi.org/10.1371/journal.pone.0271995
Article CAS PubMed PubMed Central Google Scholar
Thom M (2014) Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 40:520–543. https://doi.org/10.1111/nan.12150
Article PubMed PubMed Central Google Scholar
Nguyen LH, Leiser SC, Song D, Brunner D, Roberds SL, Wong M et al (2022) Inhibition of MEK-ERK signaling reduces seizures in two mouse models of tuberous sclerosis complex. Epilepsy Res 181:106890. https://doi.org/10.1016/j.eplepsyres.2022.106890
Article CAS PubMed PubMed Central Google Scholar
Lawal O, Ulloa Severino FP, Eroglu C (2022) The role of astrocyte structural plasticity in regulating neural circuit function and behavior. Glia 70:1467–1483. https://doi.org/10.1002/glia.24191
Article CAS PubMed PubMed Central Google Scholar
Vargas-Sánchez K, Mogilevskaya M, Rodríguez-Pérez J, Rubiano MG, Javela JJ, González-Reyes RE (2018) Astroglial role in the pathophysiology of status epilepticus: an overview. Oncotarget 9:26954. https://doi.org/10.18632/oncotarget.25485
Article PubMed PubMed Central Google Scholar
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ (2021) Beyond the GFAP-astrocyte protein markers in the brain. Biomolecules 11:1361. https://doi.org/10.3390/biom11091361
Article CAS PubMed PubMed Central Google Scholar
Parikh P, Juul SE (2018) Neuroprotective strategies in neonatal brain injury. J Pediatr 192:22–32. https://doi.org/10.1016/j.jpeds.2017.08.031
Riuzzi F, Sorci G, Arcuri C, Giambanco I, Bellezza I, Minelli A et al (2018) Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J Cachexia Sarcopenia Muscle 9:1255–1268. https://doi.org/10.1002/jcsm.12363
Article PubMed PubMed Central Google Scholar
Liang KG, Mu RZ, Liu Y, Jiang D, Jia TT, Huang YJ (2019) Increased serum S100B levels in patients with epilepsy: A systematic review and meta-analysis study. Front Neurosci 13:456. https://doi.org/10.3389/fnins.2019.00456
Article PubMed PubMed Central Google Scholar
Vazifehkhah S, Khanizadeh AM, Mojarad TB, Nikbakht F (2020) The possible role of progranulin on anti-inflammatory effects of metformin in temporal lobe epilepsy. J Chem Neuroanat 109:101849. https://doi.org/10.1016/j.jchemneu.2020.101849
Article CAS PubMed Google Scholar
Alyu F, Dikmen M (2017) Inflammatory aspects of epileptogenesis: contribution of molecular inflammatory mechanisms. Acta Neuropsychiatrica 29:1–16. https://doi.org/10.1017/neu.2016.47
Hayatdavoudi P, Hosseini M, Hajali V, Hosseini A, Rajabian A (2022) The role of astrocytes in epileptic disorders. Physiol Rep 10:e15239. https://doi.org/10.14814/phy2.15239
Article PubMed PubMed Central Google Scholar
Colucci-D’Amato L, Perrone-Capano C, di Porzio U (2003) Chronic activation of ERK and neurodegenerative diseases. BioEssays 25:1085–1095. https://doi.org/10.1002/bies.10355
Article CAS PubMed Google Scholar
Vezzani A, Balosso S, Ravizza T (2019) Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 15:459–472. https://doi.org/10.1038/s41582-019-0217-x
Article CAS PubMed Google Scholar
Sun J, Nan G (2017) The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review). Int J Mol Med 39:1338–1346. https://doi.org/10.3892/ijmm.2017.2962
Article CAS PubMed PubMed Central Google Scholar
Rubio T, Viana R, Moreno-Estellés M, Campos-Rodríguez Á, Sanz P (2023) TNF and IL6/Jak2 signaling pathways are the main contributors of the glia-derived neuroinflammation present in Lafora disease, a fatal form of progressive myoclonus epilepsy. Neurobiol Dis 176:105964. https://doi.org/10.1016/j.nbd.2022.105964
Article CAS PubMed Google Scholar
Casillas-Espinosa PM, Ali I, O’Brien TJ (2020) Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 5:138–154. https://doi.org/10.1002/epi4.12386
Article PubMed PubMed Central Google Scholar
Du K, He M, Zhao D, Wang Y, Ma C, Liang H et al (2022) Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother 149:112875. https://doi.org/10.1016/j.biopha.2022.112875
Article CAS PubMed Google Scholar
Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214. https://doi.org/10.1111/j.1600-065X.2011.01044.x
Article CAS PubMed PubMed Central Google Scholar
Tsuchiya K (2020) Inflammasome-associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 64:252–269. https://doi.org/10.1111/1348-0421.12771
Article CAS PubMed Google Scholar
Mohseni-Moghaddam P, Roghani M, Khaleghzadeh-Ahangar H, Sadr SS, Sala C (2021) A literature overview on epilepsy and inflammasome activation. Brain Res Bull 172:229–235. https://doi.org/10.1016/j.brainresbull.2021.05.001
Article CAS PubMed Google Scholar
de Brito Toscano EC, Vieira ÉLM, Dias BBR, Caliari MV, Gonçalves AP, Giannetti AV et al (2021) NLRP3 and NLRP1 inflammasomes are up-regulated in patients with mesial temporal lobe epilepsy and may contribute to overexpression of caspase-1 and IL-β in sclerotic hippocampi. Brain Res 1752:147230. https://doi.org/10.1016/j.brainres.2020.147230
Vezzani A, Aronica E, Mazarati A, Pittman QJ (2013) Epilepsy and brain inflammation. Exp Neurol 244:11–21. https://doi.org/10.1016/j.expneurol.2011.09.033
Article CAS PubMed Google Scholar
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ (2009) Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 11:481–496. https://doi.org/10.1089/ars.2008.2263
Article CAS PubMed PubMed Central Google Scholar
Mo J, Hu J, Cheng X (2022) Progress of autophagy in epilepsy research. J Biosci Med 10:182–191. https://doi.org/10.4236/jbm.2022.1010015
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J et al (2021) Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson’s disease. Acta Pharm Sin B 11:3015–3034.
Comments (0)