Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J et al (1998) Longterm postoperative cognitive dysfunction in the elderly: ISPOCD1 study. Lancet 351:857. https://doi.org/10.1016/s0140-6736(97)07382-0
Article CAS PubMed Google Scholar
Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ, Zuo Z et al (2020) Perioperative neurocognitive disorder: State of the preclinical science. Anesthesiology 132:55–68. https://doi.org/10.1097/ALN.0000000000002956
Daiello LA, Racine AM, Yun Gou R, Marcantonio ER, Xie Z, Kunze LJ et al (2019) Postoperative delirium and postoperative cognitive dysfunction: Overlap and divergence. Anesthesiology 131:477–491. https://doi.org/10.1097/ALN.0000000000002729
Yang T, Velagapudi R, Terrando N (2020) Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol 21:1319–1326. https://doi.org/10.1038/s41590-020-00812-1
Article CAS PubMed PubMed Central Google Scholar
Hovens IB, Schoemaker RG, van der Zee EA, Absalom AR, Heineman E, van Leeuwen BL (2014) Postoperative cognitive dysfunction: Involvement of neuroinflammation and neuronal functioning. Brain Behav Immun 38:202–210. https://doi.org/10.1016/j.bbi.2014.02.002
Article CAS PubMed Google Scholar
Chen Y, Sun JX, Chen WK, Wu GC, Wang JO, Zhu KY et al (2019) MiR-124/VAMP3 is a novel therapeutic target for mitigation of surgical trauma-induced microglial activation. Signal Transduct Target Ther 4:27. https://doi.org/10.1038/s41392-019-0061-x
Article CAS PubMed PubMed Central Google Scholar
Eldeeb MA, Thomas RA, Ragheb MA, Fallahi A, Fon EA (2022) Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev 102:1721–1755. https://doi.org/10.1152/physrev.00041.2021
Article CAS PubMed Google Scholar
Song J, Herrmann JM, Becker T (2021) Quality control of the mitochondrial proteome. Nat Rev Mol Cell Bio 22:54–70. https://doi.org/10.1038/s41580-020-00300-2
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M et al (2014) Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510:162–166. https://doi.org/10.1038/nature13392
Article CAS PubMed Google Scholar
Li J, Ma C, Long F, Yang D, Liu X, Hu Y et al (2019) Parkin impairs antiviral immunity by suppressing the mitochondrial reactive oxygen species-Nlrp3 axis and antiviral inflammation. iScience 16:468–484. https://doi.org/10.1016/j.isci.2019.06.008
Article CAS PubMed PubMed Central Google Scholar
Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B et al (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412. https://doi.org/10.1038/s41593-018-0332-9
Article CAS PubMed PubMed Central Google Scholar
Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J et al (2016) NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164:896–910. https://doi.org/10.1016/j.cell.2015.12.057
Article CAS PubMed PubMed Central Google Scholar
Sun L, Wu J, Du F, Chen C, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339786–791. https://doi.org/10.1126/science.1232458
Ablasser A, Chen ZJ (2019) cGAS in action: Expanding roles in immunity and inflammation. Science 363:eaat8657. https://doi.org/10.1126/science.aat8657
Article CAS PubMed Google Scholar
Jin M, Shiwaku H, Tanaka H, Obita T, Ohuchi S, Yoshioka Y et al (2021) Tau activates microglia via the PQBP1-cGAS-STING pathway to promote brain inflammation. Nat Commun 12:6565. https://doi.org/10.1038/s41467-021-26851-2
Article CAS PubMed PubMed Central Google Scholar
Liao Y, Cheng J, Kong X, Li S, Li X, Zhang M et al (2020) HDAC3 inhibition ameliorates ischemia/reperfusion-induced brain injury by regulating the microglial cGAS-STING pathway. Theranostics 10:9644–9662. https://doi.org/10.7150/thno.47651
Article CAS PubMed PubMed Central Google Scholar
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM et al (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520:553–557. https://doi.org/10.1038/nature14156
Article CAS PubMed PubMed Central Google Scholar
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P et al (2020) TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell 183:636–649. https://doi.org/10.1016/j.cell.2020.09.020
Article CAS PubMed PubMed Central Google Scholar
Sliter DA, Martinez J, Hao L, Chen X, Sun N, Fischer TD et al (2018) Parkin and PINK1 mitigate STING-induced inflammation. Nature 561:258–262. https://doi.org/10.1038/s41586-018-0448-9
Article CAS PubMed PubMed Central Google Scholar
Qiu LL, Pan W, Luo D, Zhang GF, Zhou ZQ, Sun XY et al (2020) Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation 17:23. https://doi.org/10.1186/s12974-019-1695-x
Article CAS PubMed PubMed Central Google Scholar
Li C, Li Q, Liu S, Li J, Yu W, Li Y et al (2022) sVCAM1 in the hippocampus contributes to postoperative cognitive dysfunction in mice by inducing microglial activation through the VLA-4 Receptor. Mol Neurobiol 59:5485–5503. https://doi.org/10.1007/s12035-022-02924-1
Article CAS PubMed Google Scholar
Zhang S, An X, Huang S, Zeng L, Xu Y, Su D et al (2021) AhR/miR-23a-3p/PKCα axis contributes to memory deficits in ovariectomized and normal aging female mice. Mol Ther Nucleic Acids 24:79–91. https://doi.org/10.1016/j.omtn.2021.02.015
Article CAS PubMed PubMed Central Google Scholar
McCauley ME, O’Rourke JG, Yáñez A, Markman JL, Ho R, Wang X et al (2020) C9orf72 in myeloid cells suppresses STING-induced inflammation. Nature 585:96–101. https://doi.org/10.1038/s41586-020-2625-x
Article CAS PubMed PubMed Central Google Scholar
Zhu H, Tan Y, Du W, Li Y, Toan S, Mui D et al (2021) Phosphoglycerate mutase 5 exacerbates cardiac ischemia-reperfusion injury through disrupting mitochondrial quality control. Redox Biol 38:101777. https://doi.org/10.1016/j.redox.2020.101777
Article CAS PubMed Google Scholar
Decout A, Katz JD, Venkatraman S, Ablasser A (2021) The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat Rev Immunol 21:548–569. https://doi.org/10.1038/s41577-021-00524-z
Article CAS PubMed PubMed Central Google Scholar
Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR et al (2014) Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell 159:1563–1577. https://doi.org/10.1016/j.cell.2014.11.037
Article CAS PubMed PubMed Central Google Scholar
Bai J, Cervantes C, Liu J, He S, Zhou H, Zhang B et al (2017) DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway. PNAS 114:12196–12201.
Comments (0)