Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci. 2018;21:1341–9. https://doi.org/10.1038/s41593-018-0238-6.
Article CAS PubMed PubMed Central Google Scholar
Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12:609–22. https://doi.org/10.1016/S1474-4422(13)70090-5.
Article CAS PubMed Google Scholar
Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20:484–96. https://doi.org/10.1016/S1474-4422(21)00066-1.
Article CAS PubMed PubMed Central Google Scholar
Smith R, Capotosti F, Schain M, Ohlsson T, Touilloux T, Hliva V, et al. Initial clinical scans using [18F]ACI-12589, a novel α-synuclein PET-tracer. Alzheimers Dement. 2022;18:e065394. https://doi.org/10.1002/alz.065394.
Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell. 2023. https://doi.org/10.1016/j.cell.2023.06.004.
Kuebler L, Buss S, Leonov A, Ryazanov S, Schmidt F, Maurer A, et al. [(11)C]MODAG-001-towards a PET tracer targeting α-synuclein aggregates. Eur J Nucl Med Mol Imaging. 2021;48:1759–72. https://doi.org/10.1007/s00259-020-05133-x.
Article CAS PubMed Google Scholar
Matsuoka K, Ono M, Takado Y, Hirata K, Endo H, Ohfusa T, et al. High-contrast imaging of α-synuclein pathologies in living patients with multiple system atrophy. Mov Disord. 2022;37:2159–61. https://doi.org/10.1002/mds.29186.
Calvo-Rodriguez M, Hou SS, Snyder AC, Dujardin S, Shirani H, Nilsson KPR, et al. In vivo detection of tau fibrils and amyloid beta aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol Commun. 2019;7:171. https://doi.org/10.1186/s40478-019-0832-1.
Article CAS PubMed PubMed Central Google Scholar
Verwilst P, Kim H-R, Seo J, Sohn N-W, Cha S-Y, Kim Y, et al. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe. J Am Chem Soc. 2017;139:13393–403. https://doi.org/10.1021/jacs.7b05878.
Article CAS PubMed Google Scholar
Wu Q, Lin Y, Gu J, Sigurdsson E. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35. https://doi.org/10.1016/j.ebiom.2018.08.041.
Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci. 2014;111:510–4. https://doi.org/10.1073/pnas.1318807111.
Article CAS PubMed Google Scholar
McMurray L, Macdonald JA, Ramakrishnan NK, Zhao Y, Williamson DW, Tietz O, et al. Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chem Neurosci. 2021;12:1885–93. https://doi.org/10.1021/acschemneuro.0c00790.
Article CAS PubMed Google Scholar
Bian J, Liu YQ, He J, Lin X, Qiu CY, Yu WB, et al. Discovery of styrylaniline derivatives as novel alpha-synuclein aggregates ligands. Eur J Med Chem. 2021;226:113887. https://doi.org/10.1016/j.ejmech.2021.113887.
Article CAS PubMed Google Scholar
Hou SS, Yang J, Lee JH, Kwon Y, Calvo-Rodriguez M, Bao K, et al. Near-infrared fluorescence lifetime imaging of amyloid-β aggregates and tau fibrils through the intact skull of mice. 2023. Nat Biomed Eng. https://doi.org/10.1038/s41551-023-01003-7.
Torre-Muruzabal T, Van der Perren A, Coens A, Gelders G, Janer AB, Camacho-Garcia S, et al. Host oligodendrogliopathy and α-synuclein strains dictate disease severity in multiple system atrophy. Brain. 2023;146:237–51. https://doi.org/10.1093/brain/awac061.
Malarte ML, Nordberg A, Lemoine L. Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-05035-y.
Article PubMed PubMed Central Google Scholar
LeVine H 3rd. Multiple ligand binding sites on A beta(1–40) fibrils. Amyloid. 2005;12:5–14. https://doi.org/10.1080/13506120500032295.
Article CAS PubMed Google Scholar
Ni R, Gillberg P-G, Bogdanovic N, Viitanen M, Myllykangas L, Nennesmo I, et al. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer’s disease. Alzheimers Dement. 2017;13:419–30. https://doi.org/10.1016/j.jalz.2016.08.006.
Yap SY, Frias B, Wren MC, Schöll M, Fox NC, Årstad E, et al. Discriminatory ability of next-generation tau PET tracers for Alzheimer’s disease. Brain. 2021. https://doi.org/10.1093/brain/awab120.
Article PubMed PubMed Central Google Scholar
Gerez JA, Prymaczok NC, Riek R. In-Cell NMR of Intrinsically Disordered Proteins in Mammalian Cells. Methods Mol Biol. 2020;2141:873–93. https://doi.org/10.1007/978-1-0716-0524-0_45.
Article CAS PubMed Google Scholar
Schütz AK, Hornemann S, Wälti MA, Greuter L, Tiberi C, Cadalbert R, et al. Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chem Neurosci. 2018;9:475–81. https://doi.org/10.1021/acschemneuro.7b00397.
Article CAS PubMed Google Scholar
Shi Y, Murzin A, Falcon B, Epstein A, Machin J, Tempest P, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 2021:1–12. https://doi.org/10.1007/s00401-021-02294-3.
Antonschmidt L, Matthes D, Dervişoğlu R, Frieg B, Dienemann C, Leonov A, et al. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Nat Commun. 2022;13:5385. https://doi.org/10.1038/s41467-022-32797-w.
Article CAS PubMed PubMed Central Google Scholar
Ferrie JJ, Lengyel-Zhand Z, Janssen B, Lougee MG, Giannakoulias S, Hsieh C-J, et al. Identification of a nanomolar affinity α-synuclein fibril imaging probe by ultra-high throughput in silico screening. Chem Sci. 2020;11:12746–54. https://doi.org/10.1039/d0sc02159h.
Article CAS PubMed PubMed Central Google Scholar
Sanna E, Rodrigues M, Fagan SG, Chisholm TS, Kulenkampff K, Klenerman D, et al. Mapping the binding site topology of amyloid protein aggregates using multivalent ligands. Chem Sci. 2021;12:8892–9. https://doi.org/10.1039/d1sc01263k.
Article CAS PubMed PubMed Central Google Scholar
Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021. https://doi.org/10.1038/s41586-021-03911-7.
Article PubMed PubMed Central Google Scholar
Zhou Y, Li J, Nordberg A, Ågren H. Dissecting the Binding Profile of PET Tracers to Corticobasal Degeneration Tau Fibrils. ACS Chem Neurosci. 2021;12:3487–96. https://doi.org/10.1021/acschemneuro.1c00536.
Article CAS PubMed Google Scholar
Kuang G, Murugan NA, Zhou Y, Nordberg A, Ågren H. Computational Insight into the Binding Profile of the Second-Generation PET Tracer PI2620 with Tau Fibrils. ACS Chem Neurosci. 2020;11:900–8. https://doi.org/10.1021/acschemneuro.9b00578.
Article CAS PubMed Google Scholar
Kuang G, Murugan NA, Ågren H. Mechanistic Insight into the Binding Profile of DCVJ and α-Synuclein Fibril Revealed by Multiscale Simulations. ACS Chem Neurosci. 2019;10:610–7. https://doi.org/10.1021/acschemneuro.8b00465.
Article CAS PubMed Google Scholar
Murugan NA, Nordberg A, Ågren H. Different Positron Emission Tomography Tau Tracers Bind to Multiple Binding Sites on the Tau Fibril: Insight from Computational Modeling. ACS Chem Neurosci. 2018;9:1757–67. https://doi.org/10.1021/acschemneuro.8b00093.
Comments (0)