Efficient characterization of multiple binding sites of small molecule imaging ligands on amyloid-beta, tau and alpha-synuclein

Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci. 2018;21:1341–9. https://doi.org/10.1038/s41593-018-0238-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12:609–22. https://doi.org/10.1016/S1474-4422(13)70090-5.

Article  CAS  PubMed  Google Scholar 

Dubois B, Villain N, Frisoni GB, Rabinovici GD, Sabbagh M, Cappa S, et al. Clinical diagnosis of Alzheimer’s disease: recommendations of the International Working Group. Lancet Neurol. 2021;20:484–96. https://doi.org/10.1016/S1474-4422(21)00066-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith R, Capotosti F, Schain M, Ohlsson T, Touilloux T, Hliva V, et al. Initial clinical scans using [18F]ACI-12589, a novel α-synuclein PET-tracer. Alzheimers Dement. 2022;18:e065394. https://doi.org/10.1002/alz.065394.

Article  Google Scholar 

Xiang J, Tao Y, Xia Y, Luo S, Zhao Q, Li B, et al. Development of an α-synuclein positron emission tomography tracer for imaging synucleinopathies. Cell. 2023. https://doi.org/10.1016/j.cell.2023.06.004.

Article  PubMed  Google Scholar 

Kuebler L, Buss S, Leonov A, Ryazanov S, Schmidt F, Maurer A, et al. [(11)C]MODAG-001-towards a PET tracer targeting α-synuclein aggregates. Eur J Nucl Med Mol Imaging. 2021;48:1759–72. https://doi.org/10.1007/s00259-020-05133-x.

Article  CAS  PubMed  Google Scholar 

Matsuoka K, Ono M, Takado Y, Hirata K, Endo H, Ohfusa T, et al. High-contrast imaging of α-synuclein pathologies in living patients with multiple system atrophy. Mov Disord. 2022;37:2159–61. https://doi.org/10.1002/mds.29186.

Calvo-Rodriguez M, Hou SS, Snyder AC, Dujardin S, Shirani H, Nilsson KPR, et al. In vivo detection of tau fibrils and amyloid beta aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy. Acta Neuropathol Commun. 2019;7:171. https://doi.org/10.1186/s40478-019-0832-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Verwilst P, Kim H-R, Seo J, Sohn N-W, Cha S-Y, Kim Y, et al. Rational Design of in Vivo Tau Tangle-Selective Near-Infrared Fluorophores: Expanding the BODIPY Universe. J Am Chem Soc. 2017;139:13393–403. https://doi.org/10.1021/jacs.7b05878.

Article  CAS  PubMed  Google Scholar 

Wu Q, Lin Y, Gu J, Sigurdsson E. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35. https://doi.org/10.1016/j.ebiom.2018.08.041.

Kuchibhotla KV, Wegmann S, Kopeikina KJ, Hawkes J, Rudinskiy N, Andermann ML, et al. Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo. Proc Natl Acad Sci. 2014;111:510–4. https://doi.org/10.1073/pnas.1318807111.

Article  CAS  PubMed  Google Scholar 

McMurray L, Macdonald JA, Ramakrishnan NK, Zhao Y, Williamson DW, Tietz O, et al. Synthesis and Assessment of Novel Probes for Imaging Tau Pathology in Transgenic Mouse and Rat Models. ACS Chem Neurosci. 2021;12:1885–93. https://doi.org/10.1021/acschemneuro.0c00790.

Article  CAS  PubMed  Google Scholar 

Bian J, Liu YQ, He J, Lin X, Qiu CY, Yu WB, et al. Discovery of styrylaniline derivatives as novel alpha-synuclein aggregates ligands. Eur J Med Chem. 2021;226:113887. https://doi.org/10.1016/j.ejmech.2021.113887.

Article  CAS  PubMed  Google Scholar 

Hou SS, Yang J, Lee JH, Kwon Y, Calvo-Rodriguez M, Bao K, et al. Near-infrared fluorescence lifetime imaging of amyloid-β aggregates and tau fibrils through the intact skull of mice. 2023. Nat Biomed Eng. https://doi.org/10.1038/s41551-023-01003-7.

Torre-Muruzabal T, Van der Perren A, Coens A, Gelders G, Janer AB, Camacho-Garcia S, et al. Host oligodendrogliopathy and α-synuclein strains dictate disease severity in multiple system atrophy. Brain. 2023;146:237–51. https://doi.org/10.1093/brain/awac061.

Article  PubMed  Google Scholar 

Malarte ML, Nordberg A, Lemoine L. Characterization of MK6240, a tau PET tracer, in autopsy brain tissue from Alzheimer’s disease cases. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-05035-y.

Article  PubMed  PubMed Central  Google Scholar 

LeVine H 3rd. Multiple ligand binding sites on A beta(1–40) fibrils. Amyloid. 2005;12:5–14. https://doi.org/10.1080/13506120500032295.

Article  CAS  PubMed  Google Scholar 

Ni R, Gillberg P-G, Bogdanovic N, Viitanen M, Myllykangas L, Nennesmo I, et al. Amyloid tracers binding sites in autosomal dominant and sporadic Alzheimer’s disease. Alzheimers Dement. 2017;13:419–30. https://doi.org/10.1016/j.jalz.2016.08.006.

Article  PubMed  Google Scholar 

Yap SY, Frias B, Wren MC, Schöll M, Fox NC, Årstad E, et al. Discriminatory ability of next-generation tau PET tracers for Alzheimer’s disease. Brain. 2021. https://doi.org/10.1093/brain/awab120.

Article  PubMed  PubMed Central  Google Scholar 

Gerez JA, Prymaczok NC, Riek R. In-Cell NMR of Intrinsically Disordered Proteins in Mammalian Cells. Methods Mol Biol. 2020;2141:873–93. https://doi.org/10.1007/978-1-0716-0524-0_45.

Article  CAS  PubMed  Google Scholar 

Schütz AK, Hornemann S, Wälti MA, Greuter L, Tiberi C, Cadalbert R, et al. Binding of Polythiophenes to Amyloids: Structural Mapping of the Pharmacophore. ACS Chem Neurosci. 2018;9:475–81. https://doi.org/10.1021/acschemneuro.7b00397.

Article  CAS  PubMed  Google Scholar 

Shi Y, Murzin A, Falcon B, Epstein A, Machin J, Tempest P, et al. Cryo-EM structures of tau filaments from Alzheimer’s disease with PET ligand APN-1607. Acta Neuropathol. 2021:1–12. https://doi.org/10.1007/s00401-021-02294-3.

Antonschmidt L, Matthes D, Dervişoğlu R, Frieg B, Dienemann C, Leonov A, et al. The clinical drug candidate anle138b binds in a cavity of lipidic α-synuclein fibrils. Nat Commun. 2022;13:5385. https://doi.org/10.1038/s41467-022-32797-w.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrie JJ, Lengyel-Zhand Z, Janssen B, Lougee MG, Giannakoulias S, Hsieh C-J, et al. Identification of a nanomolar affinity α-synuclein fibril imaging probe by ultra-high throughput in silico screening. Chem Sci. 2020;11:12746–54. https://doi.org/10.1039/d0sc02159h.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sanna E, Rodrigues M, Fagan SG, Chisholm TS, Kulenkampff K, Klenerman D, et al. Mapping the binding site topology of amyloid protein aggregates using multivalent ligands. Chem Sci. 2021;12:8892–9. https://doi.org/10.1039/d1sc01263k.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, et al. Structure-based classification of tauopathies. Nature. 2021. https://doi.org/10.1038/s41586-021-03911-7.

Article  PubMed  PubMed Central  Google Scholar 

Zhou Y, Li J, Nordberg A, Ågren H. Dissecting the Binding Profile of PET Tracers to Corticobasal Degeneration Tau Fibrils. ACS Chem Neurosci. 2021;12:3487–96. https://doi.org/10.1021/acschemneuro.1c00536.

Article  CAS  PubMed  Google Scholar 

Kuang G, Murugan NA, Zhou Y, Nordberg A, Ågren H. Computational Insight into the Binding Profile of the Second-Generation PET Tracer PI2620 with Tau Fibrils. ACS Chem Neurosci. 2020;11:900–8. https://doi.org/10.1021/acschemneuro.9b00578.

Article  CAS  PubMed  Google Scholar 

Kuang G, Murugan NA, Ågren H. Mechanistic Insight into the Binding Profile of DCVJ and α-Synuclein Fibril Revealed by Multiscale Simulations. ACS Chem Neurosci. 2019;10:610–7. https://doi.org/10.1021/acschemneuro.8b00465.

Article  CAS  PubMed  Google Scholar 

Murugan NA, Nordberg A, Ågren H. Different Positron Emission Tomography Tau Tracers Bind to Multiple Binding Sites on the Tau Fibril: Insight from Computational Modeling. ACS Chem Neurosci. 2018;9:1757–67. https://doi.org/10.1021/acschemneuro.8b00093.

Article  CAS  PubMed 

Comments (0)

No login
gif