OcuViT: A Vision Transformer-Based Approach for Automated Diabetic Retinopathy and AMD Classification

Teo, Z.L., Tham, Y.-C., Yu, M., Chee, M.L., Rim, T.H., Cheung, N., Bikbov, M.M., Wang, Y.X., Tang, Y., Lu, Y., et al.: Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128(11), 1580–1591 (2021)

Article  PubMed  Google Scholar 

Saunier, V., Merle, B.M., Delyfer, M.-N., Cougnard-Grégoire, A., Rougier, M.-B., Amouyel, P., Lambert, J.-C., Dartigues, J.-F., Korobelnik, J.-F., Delcourt, C.: Incidence of and risk factors associated with age-related macular degeneration: four-year follow-up from the alienor study. JAMA ophthalmology 136(5), 473–481 (2018)

Article  PubMed  PubMed Central  Google Scholar 

Elkholy, M., Marzouk, M.A.: Deep learning-based classification of eye diseases using convolutional neural network for oct images. Frontiers in Computer Science 5, 1252295 (2024)

Article  Google Scholar 

Reguant, R., Brunak, S., Saha, S.: Understanding inherent image features in cnn-based assessment of diabetic retinopathy. Scientific Reports 11(1), 9704 (2021)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Faria, F.T.J., Moin, M.B., Debnath, P., Fahim, A.I., Shah, F.M.: Explainable convolutional neural networks for retinal fundus classification and cutting-edge segmentation models for retinal blood vessels from fundus images. arXiv preprint arXiv:2405.07338 (2024)

Thanikachalam, V., Kabilan, K., Erramchetty, S.K.: Optimized deep cnn for detection and classification of diabetic retinopathy and diabetic macular edema. BMC Medical Imaging 24(1), 227 (2024)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Devlin, J.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

Khan, S., Naseer, M., Hayat, M., Zamir, S.W., Khan, F.S., Shah, M.: Transformers in vision: A survey. ACM computing surveys (CSUR) 54(10s), 1–41 (2022)

Article  Google Scholar 

Wu, J., Hu, R., Xiao, Z., Chen, J., Liu, J.: Vision transformer-based recognition of diabetic retinopathy grade. Medical Physics 48(12), 7850–7863 (2021)

Article  PubMed  Google Scholar 

Mallick, S., Paul, J., Sengupta, N., Sil, J.: Study of different transformer based networks for glaucoma detection. In: TENCON 2022-2022 IEEE Region 10 Conference (TENCON), pp. 1–6 (2022). IEEE

Nazih, W., Aseeri, A.O., Atallah, O.Y., El-Sappagh, S.: Vision transformer model for predicting the severity of diabetic retinopathy in fundus photography-based retina images. IEEE Access 11, 117546–117561 (2023)

Article  Google Scholar 

Dosovitskiy, A.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

Vujosevic, S., Limoli, C., Nucci, P.: Novel artificial intelligence for diabetic retinopathy and diabetic macular edema: what is new in 2024? Current Opinion in Ophthalmology 35(6), 472–479 (2024)

Article  PubMed  PubMed Central  Google Scholar 

Arora, L., Singh, S.K., Kumar, S., Gupta, H., Alhalabi, W., Arya, V., Bansal, S., Chui, K.T., Gupta, B.B.: Ensemble deep learning and efficientnet for accurate diagnosis of diabetic retinopathy. Scientific Reports 14(1), 30554 (2024)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, P.N., Krishna, C.N., Lukka, S.L.: Retinal image classification by using continual learning. In: 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), pp. 1829–1835 (2024). IEEE

Zhu, S., Xiong, C., Zhong, Q., Yao, Y.: Diabetic retinopathy classification with deep learning via fundus images: A short survey. IEEE Access (2024)

Ahmed, F., Bhuiyan, M.A.N., Coskunuzer, B.: Topo-cnn: Retinal image analysis with topological deep learning. Journal of Imaging Informatics in Medicine, 1–17 (2025)

Ahmed, F.: Topological machine learning in medical image analysis. PhD thesis, The University of Texas at Dallas (2023)

Ahmed, F., Coskunuzer, B.: Tofi-ml: Retinal image screening with topological machine learning. In: Annual Conference on Medical Image Understanding and Analysis, pp. 281–297 (2023). Springer

Yadav, A., Ahmed, F., Daescu, O., Gedik, R., Coskunuzer, B.: Histopathological cancer detection with topological signatures. In: 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1610–1619 (2023). IEEE

Ahmed, F., Nuwagira, B., Torlak, F., Coskunuzer, B.: Topo-CXR: Chest X-ray TB and Pneumonia Screening with Topological Machine Learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2326–2336 (2023)

Rodríguez, M.A., AlMarzouqi, H., Liatsis, P.: Multi-label retinal disease classification using transformers. IEEE Journal of Biomedical and Health Informatics 27(6), 2739–2750 (2022)

Article  Google Scholar 

He, J., Wang, J., Han, Z., Ma, J., Wang, C., Qi, M.: An interpretable transformer network for the retinal disease classification using optical coherence tomography. Scientific Reports 13(1), 3637 (2023)

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pu, Q., Xi, Z., Yin, S., Zhao, Z., Zhao, L.: Advantages of transformer and its application for medical image segmentation: a survey. BioMedical Engineering OnLine 23(1), 14 (2024)

Article  PubMed  PubMed Central  Google Scholar 

Shamshad, F., Khan, S., Zamir, S.W., Khan, M.H., Hayat, M., Khan, F.S., Fu, H.: Transformers in medical imaging: A survey. Medical Image Analysis 88, 102802 (2023)

Article  PubMed  Google Scholar 

Fang, H., et al.: ADAM challenge: Detecting age-related macular degeneration from fundus images. IEEE Transactions on Medical Imaging (2022)

Fu, H., et al.: ADAM: Automatic Detection challenge on AMD. IEEE Dataport (2020). https://doi.org/10.21227/dt4f-rt59

APTOS: Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 Blindness Detection Dataset. https://www.kaggle.com/c/aptos2019-blindness-detection (2019)

Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., Gain, P.: Feedback on a publicly distributed image database: the messidor database. Image Analysis & Stereology 33(3), 231–234 (2014)

Article  Google Scholar 

Kaggle: Diabetic Retinopathy Detection Challenge. Online. https://www.kaggle.com/c/diabetic-retinopathy-detection (2015)

Porwal, P., Pachade, S., Kamble, R., Kokare, M., Deshmukh, G., Sahasrabuddhe, V., Meriaudeau, F., Dufour, J.-Y.: Indian diabetic retinopathy image dataset (idrid): A database for diabetic retinopathy screening research. Data 5(1), 8 (2020)

Google Scholar 

Yang, J., Shi, R., Huang, X., Wang, L., Zhu, Y., Li, H.-Y., Wang, Y.: Medmnist classification decathlon: A lightweight automl benchmark for medical image analysis. Nature Scientific Data 8(1), 1–14 (2021)

Google Scholar 

Group, A.-R.E.D.S.R.: Risk factors associated with age-related macular degeneration: A case–control study in the age-related eye disease study: Areds report number 3. Ophthalmology 107(12), 2224–2232 (2001)

Goutam, B., Hashmi, M.F., Geem, Z.W., Bokde, N.D.: A comprehensive review of deep learning strategies in retinal disease diagnosis using fundus images. IEEE Access (2022)

Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742 (2018)

Ye, M., Zhang, X., Yuen, P.C., Chang, S.-F.: Unsupervised embedding learning via invariant and spreading instance feature. In: CVPR, pp. 6210–6219 (2019)

Feng, Z., Xu, C., Tao, D.: Self-supervised representation learning by rotation feature decoupling. In: CVPR, pp. 10364–10374 (2019)

Li, X., Hu, X., Qi, X., Yu, L., Zhao, W., Heng, P.-A., Xing, L.: Rotation-oriented collaborative self-supervised learning for retinal disease diagnosis. IEEE Transactions on Medical Imaging 40(9), 2284–2294 (2021)

Article  PubMed  Google Scholar 

Chakraborty, R., ., Pramanik, A.: Dcnn-based prediction model for detection of AMD from color fundus images. Medical & Bio. Eng. & Comp. 60(5), 1431–1448 (2022)

Article  Google Scholar 

Bi, Q., Zheng, H., Sun, X., Yi, J., Zhang, W., Huang, Y., Li, Y., Zheng, Y.: Self-supervised cross-level consistency learning for fundus image classification. In: ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1781–1785 (2024). IEEE

Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020). PMLR

Zhang, Z., Ji, Z., Chen, Q., Yuan, S., Fan, W.: Joint optimization of cyclegan and cnn classifier for detection and localization of retinal pathologies on color fundus photographs. IEEE Journal of Biomedical and Health Informatics 26(1), 115–126 (2021)

Article  Google Scholar 

Chaturvedi, S.S., Gupta, K., Ninawe, V., Prasad, P.S.: Automated diabetic retinopathy grading using deep convolutional neural network. arXiv preprint arXiv:2004.06334 (2020)

Bodapati, J.D., al.: Blended multi-modal deep convnet features for diabetic retinopathy severity prediction. Electronics 9(6), 914 (2020)

Kumar, G., Chatterjee, S., Chattopadhyay, C.: Dristi: a hybrid deep neural network for diabetic retinopathy diagnosis. Signal, Image and Video Processing 15(8), 1679–1686 (2021)

Article  PubMed  PubMed Central  Google Scholar 

Bodapati, J.D., al.: Composite deep neural network with gated-attention mechanism for DR severity classification. J. Amb. Int. Hum. Compt. 12(10), 9825–9839 (2021)

Macsik, P., Pavlovicova, J., Goga, J., Kajan, S.: Local binary cnn for diabetic retinopathy classification on fundus images. Acta Polytech. Hung. 19(7), 27–45 (2022)

Article  Google Scholar 

Long, F., Xiong, H., Sang, J.: A classification method for diabetic retinopathy based on self-supervised learning. In: International Conference on Intelligent Computing, pp. 347–357 (2024). Springer

Islam, M.R., et al.: Applying supervised contrastive learning for the detection of DR and its severity levels from fundus images. Computers in Biology and Medicine 146, 105602 (2022)

Article  PubMed  Google Scholar 

Li, X., Hu, X., Yu, L., Zhu, L., Fu, C.-W., Heng, P.-A.: Canet: cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading. IEEE transactions on medical imaging 39(5), 1483–1493 (2019)

Article  PubMed  Google Scholar 

Liu, S., Gong, L., Ma, K., Zheng, Y.: Green: a graph residual re-ranking network for grading diabetic retinopathy. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part V 23, pp. 585–594 (2020). Springer

Yu, S., Ma, K., Bi, Q., Bian, C., Ning, M., He, N., Li, Y., Liu, H., Zheng, Y.: Mil-vt: Multiple instance learning enhanced vision transformer for fundus image classification. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VIII 24, pp. 45–54 (2021). Springer

Singh, A.R., Singh, G., Saluja, N., Garg, L.: Mobilenetv2-svm hybrid model classification of diabetic retinopathy effected human eye. In: 2024 Global Conference on Communications and Information Technologies (GCCIT), pp. 1–5 (2024). IEEE

Comments (0)

No login
gif