Exploiting Cross-modal Collaboration and Discrepancy for Semi-supervised Ischemic Stroke Lesion Segmentation from Multi-sequence MRI Images

Feske SK: Ischemic stroke. Am J Med. 134(12): 1457–1464. 2021.

Article  PubMed  Google Scholar 

Hakim A, Christensen S, Winzeck S, Lansberg MG, Parsons MW, Lucas C, et al.: Predicting infarct core from computed tomography perfusion in acute ischemia with machine learning: Lessons from the ISLES challenge. Stroke. 52(7): 2328–2337. 2021.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Giancardo L, Niktabe A, Ocasio L, Abdelkhaleq R, Salazar-Marioni S, Sheth SA: Segmentation of acute stroke infarct core using image-level labels on CT-angiography. Neuroimage Clin. 37: 103362. 2023.

Article  PubMed  PubMed Central  Google Scholar 

Muir KW, Buchan A, von Kummer R, Rother J, Baron JC: Imaging of acute stroke. Lancet Neurol. 5(9): 755–768. 2006.

Article  PubMed  Google Scholar 

Federau C, Christensen S, Scherrer N, Ospel JM, Schulze-Zachau V, Schmidt N, et al.: Improved segmentation and detection sensitivity of diffusion-weighted stroke lesions with synthetically enhanced deep learning. Radiology Artif Intell. 2(5): e190217. 2020.

Article  Google Scholar 

Ma J, Zhang Y, Gu S, Zhu C, Ge C, Zhang Y, et al.: AbdomenCT-1K: Is Abdominal Organ Segmentation A Solved Problem? IEEE Trans Pattern Anal Mach Intell. 44(10): 6695–6714. 2022.

Article  PubMed  Google Scholar 

Lalande A, Chen Z, Pommier T, Decourselle T, Qayyum A, Salomon M, et al.: Deep Learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge. Med Image Anal. 79: 102428. 2022.

Antonelli M, Reinke A, Bakas S, Farahani K, Kopp-Schneider A, Landman BA, et al.: The medical segmentation decathlon. Nat Commun. 13(1): 4128. 2022.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Luo J, Dai P, He Z, Huang Z, Liao S, Liu K: Deep learning models for ischemic stroke lesion segmentation in medical images: a survey. Comput Biol Med. 175: 108509. 2024.

Article  PubMed  Google Scholar 

Kamel P, Kanhere A, Kulkarni P, Khalid M, Steger R, Bodanapally U, et al.: Optimizing Acute Stroke Segmentation on MRI Using Deep Learning: Self-Configuring Neural Networks Provide High Performance Using Only DWI Sequences. J Imaging Inform Med. 38: 717–726. 2024.

Article  PubMed  PubMed Central  Google Scholar 

Schaefer PW, Ozsunar Y, He J, Hamberg LM, Hunter GJ, Sorensen AG, et al.: Assessing tissue viability with MR diffusion and perfusion imaging. Am J Neuroradiol. 24(3): 436–443. 2003.

PubMed  PubMed Central  Google Scholar 

Purushotham A, Campbell BC, Straka M, Mlynash M, Olivot JM, Bammer R, et al.: Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke. 10(3): 348–353. 2015.

Article  PubMed  Google Scholar 

Li YH, Lin SC, Chung HW, Chang CC, Peng HH, Huang TY, et al.: The role of input imaging combination and ADC threshold on segmentation of acute ischemic stroke lesion using U-Net. Eur Radiol. 33(9): 6157–6167. 2023.

Article  PubMed  Google Scholar 

Tajbakhsh N, Jeyaseelan L, Li Q, Chiang JN, Wu Z, Ding X: Embracing imperfect datasets: A review of deep learning solutions for medical image segmentation. Med Image Anal. 63: 101693. 2020.

Article  PubMed  Google Scholar 

Shi Y, Ma J, Yang J, Wang S, Zhang Y: Beyond pixel-wise supervision for medical image segmentation: From traditional models to foundation models. arXiv preprint arXiv:2404.13239. 2024.

Jiao R, Zhang Y, Ding L, Xue B, Zhang J, Cai R, et al.: Learning with limited annotations: a survey on deep semi-supervised learning for medical image segmentation. Comput Biol Med. 169: 107840. 2024.

Article  PubMed  Google Scholar 

Luo X, Liao W, Chen J, Song T, Chen Y, Zhang S, et al.: Efficient semi-supervised gross target volume of nasopharyngeal carcinoma segmentation via uncertainty rectified pyramid consistency. In: Int Conf Med Image Comput Comput Assist Interv. Springer. p 318–329; 2021.

Zhang Y, Jiao R, Liao Q, Li D, Zhang J: Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation. Artif Intell Med. 138: 102476. 2023.

Article  PubMed  Google Scholar 

Zhang S, Zhang J, Tian B, Lukasiewicz T, Xu Z: Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation. Med Image Anal. 83: 102656. 2023.

Article  PubMed  Google Scholar 

Tarvainen A, Valpola H: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. In: Adv Neural Inf Process Syst. vol 30; 2017.

Hernandez Petzsche MR, de la Rosa E, Hanning U, Wiest R, Valenzuela W, Reyes M, et al.: ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset. Sci Data. 9(1): 762. 2022.

Article  PubMed  PubMed Central  Google Scholar 

Hui H, Zhang X, Wu Z, Li F: Dual-path attention compensation U-net for stroke lesion segmentation. Comput Intell Neurosci. 2021(1): 7552185. 2021.

Article  PubMed  PubMed Central  Google Scholar 

Sheng M, Xu W, Yang J, Chen Z: Cross-attention and deep supervision UNet for lesion segmentation of chronic stroke. Front Neurosci. 16: 836412. 2022.

Article  PubMed  PubMed Central  Google Scholar 

Li C: Stroke lesion segmentation with visual cortex anatomy alike neural nets. arXiv preprint arXiv:2105.06544. 2021.

Ou Y, Yuan Y, Huang X, Wong ST, Volpi J, Wang JZ, et al.: Patcher: Patch transformers with mixture of experts for precise medical image segmentation. In: Int Conf Med Image Comput Comput Assist Interv. Springer. p 475–484; 2022.

Wang S, Chen Z, You S, Wang B, Shen Y, Lei B: Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput Appl. 34(11): 8657–8669. 2022.

Article  Google Scholar 

Ghnemat R, Khalil A, Abu Al-Haija Q: Ischemic stroke lesion segmentation using mutation model and generative adversarial network. Electronics. 12(3): 590. 2023.

Article  Google Scholar 

Soliman A, Zafari-Ghadim Y, Rashed EA, Mabrok MA: Efficient Attention-guided Transformer for brain stroke segmentation. In: Proc Int Conf Multimedia Image Process. p 127–131; 2024.

Beevi Fathima N: Stroke Lesion Prediction by Bille-Viper-Segmentation with Tandem-MU-net Model. Adv Ultrasound Diagn Ther. 9(1): 65–78. 2025.

Article  Google Scholar 

Moon HS, Heffron L, Mahzarnia A, Obeng-Gyasi B, Holbrook M, Badea CT, et al.: Automated multimodal segmentation of acute ischemic stroke lesions on clinical MR images. Magn Reson Imaging. 92: 45–57. 2022.

Article  PubMed  PubMed Central  Google Scholar 

Gheibi Y, Shirini K, Razavi SN, Farhoudi M, Samad-Soltani T: CNN-Res: deep learning framework for segmentation of acute ischemic stroke lesions on multimodal MRI images. BMC Med Inform Decis Mak. 23(1): 192. 2023.

Article  PubMed  PubMed Central  Google Scholar 

Alshehri F, Muhammad G: A few-shot learning-based ischemic stroke segmentation system using weighted MRI fusion. Image Vis Comput. 140: 104865. 2023.

Article  Google Scholar 

Zhang K, Zhu Y, Li H, Zeng Z, Liu Y, Zhang Y: Mdanet: Multimodal difference aware network for brain stroke segmentation. Biomed Signal Process Control. 95: 106383. 2024.

Article  Google Scholar 

Jeong H, Lim H, Yoon C, Won J, Lee GY, de la Rosa E, et al.: Robust ensemble of two different multimodal approaches to segment 3D ischemic stroke segmentation using brain tumor representation among multiple center datasets. J Imaging Inform Med. 37(5): 2375–2389. 2024.

Article  PubMed  PubMed Central  Google Scholar 

Liu H, Wei D, Lu D, Sun J, Wang L, Zheng Y: M3AE: Multimodal representation learning for brain tumor segmentation with missing modalities. In: Proc AAAI Conf Artif Intell. vol. 37. p 1657–1665; 2023.

Chen G, Ru J, Zhou Y, Rekik I, Pan Z, Liu X, et al.: MTANS: multi-scale mean teacher combined adversarial network with shape-aware embedding for semi-supervised brain lesion segmentation. Neuroimage. 244: 118568. 2021.

Article  PubMed  Google Scholar 

Luo X, Wang G, Liao W, Chen J, Song T, Chen Y, et al.: Semi-supervised medical image segmentation via uncertainty rectified pyramid consistency. Med Image Anal. 80: 102517. 2022.

Article  PubMed  Google Scholar 

Huang L, Ruan S, Denœux T: Semi-supervised multiple evidence fusion for brain tumor segmentation. Neurocomputing. 535: 40–52. 2023.

Article  Google Scholar 

Wu W, Yan J, Zhao Y, Sun Q, Zhang H, Cheng J, et al.: Multi-task learning for concurrent survival prediction and semi-supervised segmentation of gliomas in brain MRI. Displays. 78: 102402. 2023.

Article  CAS  Google Scholar 

Chi H, Pang J, Zhang B, Liu W: Adaptive bidirectional displacement for semi-supervised medical image segmentation. In: Proc IEEE/CVF Conf Comput Vis Pattern Recognit. p 4070–4080; 2024.

Liu H, Yuan Y, Ren P, Song C, Luo F: Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation. Comput Mater Contin. 82(1): 543–560. 2025.

Google Scholar 

Miao J, Chen C, Liu F, Wei H, Heng PA: Caussl: Causality-inspired semi-supervised learning for medical image segmentation. In: Proc. IEEE/CVF Int. Conf. Comput. Vis.. p 21426–21437; 2023.

Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al.: Segment anything. In: Proc IEEE/CVF Int Conf Comput Vis. p 4015–4026; 2023.

Zhang Y, Shen Z, Jiao R: Segment anything model for medical image segmentation: Current applications and future directions. Comput Biol Med. p. 108238. 2024.

Zhang Y, Lv B, Xue L, Zhang W, Liu Y, Fu Y, et al.: SemiSAM+: Rethinking Semi-Supervised Medical Image Segmentation in the Era of Foundation Models. arXiv preprint arXiv:2502.20749. 2025.

Li S, Qi L, Yu Q, Huo J, Shi Y, Gao Y: Stitching, Fine-tuning, Re-training: A SAM-enabled Framework for Semi-supervised 3D Medical Image Segmentation. IEEE Trans Med Imaging. 2025.

Comments (0)

No login
gif