Binvignat M, Pedoia V, Butte AJ, Louati K, Klatzmann D, Berenbaum F, et al. Use of machine learning in osteoarthritis research: a systematic literature review. RMD Open 2022;8:e001998. https://doi.org/10.1136/rmdopen-2021-001998.
Article PubMed PubMed Central Google Scholar
O’Neill TW, Felson DT. Mechanisms of Osteoarthritis (OA) Pain. Curr Osteoporos Rep 2018;16:611–6. https://doi.org/10.1007/s11914-018-0477-1.
Article PubMed PubMed Central Google Scholar
Felson DT. Osteoarthritis of the Knee. New England Journal of Medicine 2006;354:841–8. https://doi.org/10.1056/NEJMcp051726.
Article CAS PubMed Google Scholar
Neogi T. The epidemiology and impact of pain in osteoarthritis. Osteoarthritis Cartilage 2013;21:1145–53. https://doi.org/10.1016/j.joca.2013.03.018.
Article CAS PubMed PubMed Central Google Scholar
Son KM, Hong JI, Kim D-H, Jang D-G, Crema MD, Kim HA. Absence of pain in subjects with advanced radiographic knee osteoarthritis. BMC Musculoskelet Disord 2020;21:640. https://doi.org/10.1186/s12891-020-03647-x.
Article PubMed PubMed Central Google Scholar
Bedson J, Croft PR. The discordance between clinical and radiographic knee osteoarthritis: A systematic search and summary of the literature. BMC Musculoskelet Disord 2008;9:116. https://doi.org/10.1186/1471-2474-9-116.
Article PubMed PubMed Central Google Scholar
Guermazi A, Niu J, Hayashi D, Roemer FW, Englund M, Neogi T, et al. Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis: population based observational study (Framingham Osteoarthritis Study). BMJ 2012;345:e5339–e5339. https://doi.org/10.1136/bmj.e5339.
Article PubMed PubMed Central Google Scholar
Roemer FW, Crema MD, Trattnig S, Guermazi A. Advances in Imaging of Osteoarthritis and Cartilage. Radiology 2011;260:332–54. https://doi.org/10.1148/radiol.11101359.
Cigdem O, Deniz CM. Artificial intelligence in knee osteoarthritis: A comprehensive review for 2022. Osteoarthritis Imaging 2023;3:100161. https://doi.org/10.1016/j.ostima.2023.100161.
Article PubMed PubMed Central Google Scholar
Calivà F, Namiri NK, Dubreuil M, Pedoia V, Ozhinsky E, Majumdar S. Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nat Rev Rheumatol 2022;18:112–21. https://doi.org/10.1038/s41584-021-00719-7.
Bacon K, LaValley MP, Jafarzadeh SR, Felson D. Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann Rheum Dis 2020;79:1105–10. https://doi.org/10.1136/annrheumdis-2020-217363.
Article CAS PubMed Google Scholar
Felson DT, Chaisson CE, Hill CL, Totterman ; M, Elon Gale KM, Skinner L, et al. The Association of Bone Marrow Lesions with Pain in Knee Osteoarthritis. 2001.
Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C, Dabrowski C, et al. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthritis Cartilage 2009;17:1562–9. https://doi.org/10.1016/j.joca.2009.06.006.
Article CAS PubMed PubMed Central Google Scholar
Bouillon-Minois J-B, Lambert C, Dutheil F, Raconnat J, Benamor M, Dalle B, et al. Assessment of discordance between radiologists and emergency physicians of RADIOgraphs among discharged patients in an emergency department: the RADIO-ED study. Emerg Radiol 2024;31:125–31. https://doi.org/10.1007/s10140-024-02206-4.
Chang PD, Wong TT, Rasiej MJ. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear. J Digit Imaging 2019;32:980–6. https://doi.org/10.1007/s10278-019-00193-4.
Article PubMed PubMed Central Google Scholar
Key S, Baygin M, Demir S, Dogan S, Tuncer T. Meniscal Tear and ACL Injury Detection Model Based on AlexNet and Iterative ReliefF. J Digit Imaging 2022;35:200–12. https://doi.org/10.1007/s10278-022-00581-3.
Article PubMed PubMed Central Google Scholar
Deng Y, You L, Wang Y, Zhou X. A Coarse-to-Fine Framework for Automated Knee Bone and Cartilage Segmentation Data from the Osteoarthritis Initiative. J Digit Imaging 2021;34:833–40. https://doi.org/10.1007/s10278-021-00464-z.
Article PubMed PubMed Central Google Scholar
Xin Teoh Y, Othmani A, Li Goh S, Usman J, Lai KW. Deciphering Knee Osteoarthritis Diagnostic Features With Explainable Artificial Intelligence: A Systematic Review. IEEE Access 2024;12:109080–108. https://doi.org/10.1109/ACCESS.2024.3439096.
Gandomkar Z, Khong PL, Punch A, Lewis S. Using Occlusion-Based Saliency Maps to Explain an Artificial Intelligence Tool in Lung Cancer Screening: Agreement Between Radiologists, Labels, and Visual Prompts. J Digit Imaging 2022;35:1164–75. https://doi.org/10.1007/s10278-022-00631-w.
Article PubMed PubMed Central Google Scholar
Peng T, Gu Y, Zhang J, Dong Y, DI G, Wang W, et al. A Robust and Explainable Structure-Based Algorithm for Detecting the Organ Boundary From Ultrasound Multi-Datasets. J Digit Imaging 2023;36:1515–32. https://doi.org/10.1007/s10278-023-00839-4.
Bhattarai P, Thakuri DS, Nie Y, Chand GB. Explainable AI-based Deep-SHAP for mapping the multivariate relationships between regional neuroimaging biomarkers and cognition. Eur J Radiol 2024;174:111403. https://doi.org/10.1016/j.ejrad.2024.111403.
Article PubMed PubMed Central Google Scholar
Dreizin D, Goldmann F, LeBedis C, Boscak A, Dattwyler M, Bodanapally U, et al. An Automated Deep Learning Method for Tile AO/OTA Pelvic Fracture Severity Grading from Trauma whole-Body CT. J Digit Imaging 2021;34:53–65. https://doi.org/10.1007/s10278-020-00399-x.
Article PubMed PubMed Central Google Scholar
Bany Muhammad M, Yeasin M. Interpretable and parameter optimized ensemble model for knee osteoarthritis assessment using radiographs. Sci Rep 2021;11:14348. https://doi.org/10.1038/s41598-021-93851-z.
Article CAS PubMed PubMed Central Google Scholar
Pierson E, Cutler DM, Leskovec J, Mullainathan S, Obermeyer Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med 2021;27:136–40. https://doi.org/10.1038/s41591-020-01192-7.
Article CAS PubMed Google Scholar
Hu J, Zheng C, Yu Q, Zhong L, Yu K, Chen Y, et al. DeepKOA: a deep-learning model for predicting progression in knee osteoarthritis using multimodal magnetic resonance images from the osteoarthritis initiative. Quant Imaging Med Surg 2023;13:4852–66. https://doi.org/10.21037/qims-22-1251.
Hu J, Peng J, Zhou Z, Zhao T, Zhong L, Yu K, et al. Associating Knee Osteoarthritis Progression with Temporal‐Regional Graph Convolutional Network Analysis on <scp>MR</scp> Images. Journal of Magnetic Resonance Imaging 2025;61:378–91. https://doi.org/10.1002/jmri.29412.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation, 2015, p. 234–41. https://doi.org/10.1007/978-3-319-24574-4_28.
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-Image Translation with Conditional Adversarial Networks 2016.
Chang GH, Park LK, Le NA, Jhun RS, Surendran T, Lai J, et al. Subchondral Bone Length in Knee Osteoarthritis: A Deep Learning–Derived Imaging Measure and Its Association With Radiographic and Clinical Outcomes. Arthritis & Rheumatology 2021;73:2240–8. https://doi.org/10.1002/art.41808.
Defard T, Setkov A, Loesch A, Audigier R. PaDiM: A Patch Distribution Modeling Framework for Anomaly Detection and Localization, 2021, p. 475–89. https://doi.org/10.1007/978-3-030-68799-1_35.
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. 2017 IEEE International Conference on Computer Vision (ICCV), IEEE; 2017, p. 618–26. https://doi.org/10.1109/ICCV.2017.74.
Wyatt J, Leach A, Schmon SM, Willcocks CG. AnoDDPM: Anomaly Detection with Denoising Diffusion Probabilistic Models using Simplex Noise. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE; 2022, p. 649–55. https://doi.org/10.1109/CVPRW56347.2022.00080.
Wang X, Jin X, Han W, Cao Y, Halliday A, Blizzard L, et al. Cross-sectional and Longitudinal Associations between Knee Joint Effusion Synovitis and Knee Pain in Older Adults. J Rheumatol 2016;43:121–30. https://doi.org/10.3899/jrheum.150355.
Driban JB, Price LL, Lo GH, Pang J, Hunter DJ, Miller E, et al. Evaluation of bone marrow lesion volume as a knee osteoarthritis biomarker-longitudinal relationships with pain and structural changes: data from the Osteoarthritis Initiative. 2013.
Wang Y, Teichtahl AJ, Pelletier J-P, Abram F, Wluka AE, Hussain SM, et al. Knee effusion volume assessed by magnetic resonance imaging and progression of knee osteoarthritis: data from the Osteoarthritis Initiative. Rheumatology 2019;58:246–53. https://doi.org/10.1093/rheumatology/key274.
Comments (0)