A Deep Learning-Based EffConvNeXt Model for Automatic Classification of Cystic Bronchiectasis: An Explainable AI Approach

Schiebler ML, Seo JB. Artificial intelligence analysis of bronchiectasis is predictive of outcomes in chronic obstructive pulmonary disease. Radiology. 2023;307:2022–3.

Yue N, Zhang J, Zhao J, Zhang Q, Lin X, Yang J. Detection and Classification of Bronchiectasis Based on Improved Mask-RCNN. Bioengineering. 2022;9:1–18.

Ferri S, Crimi C, Heffler E, Campisi R, Noto A, Crimi N. Vitamin D and disease severity in bronchiectasis. Respir Med. 2019;148:1–5.

Sharma S, Guleria K. A systematic literature review on deep learning approaches for pneumonia detection using chest X-ray images [Internet]. Multimed. Tools Appl. Springer US; 2024. Available from: https://doi.org/10.1007/s11042-023-16419-1

Lim WS. Pneumonia—Overview. Encycl Respir Med Second Ed. 2021;4:185–97.

Singh S, Tripathi BK. Pneumonia classification using quaternion deep learning. Multimed Tools Appl [Internet]. 2022;81:1743–64. Available from: https://doi.org/10.1007/s11042-021-11409-7

Zhu B, Xing X, Kim J, Rha H, Liu C, Zhang Q, et al. Endogenous CO imaging in bacterial pneumonia with a NIR fluorescent probe. Biomaterials [Internet]. 2024;304:122419. Available from: https://doi.org/10.1016/j.biomaterials.2023.122419

Siddiqi R, Javaid S. Deep Learning for Pneumonia Detection in Chest X-ray Images: A Comprehensive Survey. J Imaging. 2024;10.

Trivedi M, Gupta A. A lightweight deep learning architecture for the automatic detection of pneumonia using chest X-ray images. Multimed Tools Appl [Internet]. 2022;81:5515–36. Available from: https://doi.org/10.1007/s11042-021-11807-x

Clark AR, Her EJ, Metcalfe R, Byrnes CA. Could automated analysis of chest X-rays detect early bronchiectasis in children? Eur J Pediatr. 2021;180:3171–9.

Guan W-J, Jiang M, Gao Y-H, Li H-M, Xu G, Zheng J-P, et al. Unsupervised learning technique identifies bronchiectasis phenotypes with distinct clinical characteristics. Int J Tuberc lung Dis. 2016;20:402–10.

Aliboni L, Pennati F, Gelmini A, Colombo A, Ciuni A, Milanese G, et al. Detection and Classification of Bronchiectasis Through Convolutional Neural Networks. J Thorac Imaging [Internet]. 2022;37. Available from: https://journals.lww.com/thoracicimaging/fulltext/2022/03000/detection_and_classification_of_bronchiectasis.4.aspx

Marques F, de Bruijne M, Dubost F, Tiddens HAW, Kemner-van de Corput M. Quantification of lung abnormalities in cystic fibrosis using deep networks. 2018;51.

Karimizadeh A, Vali M, Modaresi M. Multichannel lung sound analysis to detect severity of lung disease in cystic fibrosis. Biomed Signal Process Control [Internet]. 2021;64:102266. Available from: https://doi.org/10.1016/j.bspc.2020.102266

Naseri Z, Sherafat S, Abrishami Moghaddam H, Modaresi M, Pak N, Zamani F. Semi-automatic Methods for Airway and Adjacent Vessel Measurement in Bronchiectasis Patterns in Lung HRCT Images of Cystic Fibrosis Patients. J Digit Imaging. 2018;31:727–37.

Deepthi P, Bhuvaneshwari M, Chithra K, Dhanasree LP, Jananee V, Layola JAA. Genetic Data for Early Detection and Treatment of Cystic Fibrosis through Machine Learning. 8th Int Conf I-SMAC (IoT Soc Mobile, Anal Cloud), I-SMAC 2024 - Proc. 2024;2044–8.

Pinto NP, Amaral JLM, Lopes AJ, Melo PL. Diagnosis of Respiratory Changes in Cystic Fibrosis Using a Soft Voting Ensemble with Bayesian Networks and Machine Learning Algorithms. J Med Biol Eng [Internet]. 2023;43:112–23. Available from: https://doi.org/10.1007/s40846-023-00777-0

Reshan MS Al, Gill KS, Anand V, Gupta S, Alshahrani H, Sulaiman A, et al. Detection of Pneumonia from Chest X-ray Images Utilizing MobileNet Model. Healthc. 2023;11.

Pappula S, Nadendla T, Lomadugu NB, Revanth Nalla S. Detection and Classification of Pneumonia Using Deep Learning by the Dense Net-121 Model. 2023 9th Int Conf Adv Comput Commun Syst ICACCS 2023. 2023;1:1671–5.

Sharma S, Guleria K. A Deep Learning based model for the Detection of Pneumonia from Chest X-Ray Images using VGG-16 and Neural Networks. Procedia Comput Sci [Internet]. 2023;218:357–66. Available from: https://doi.org/10.1016/j.procs.2023.01.018

Szepesi P, Szilágyi L. Detection of pneumonia using convolutional neural networks and deep learning. Biocybern Biomed Eng. 2022;42:1012–22.

Rajaraman S, Candemir S, Kim I, Thoma G, Antani S. Visualization and interpretation of convolutional neural network predictions in detecting pneumonia in pediatric chest radiographs. Appl Sci. 2018;8.

Xue X, Chinnaperumal S, Abdulsahib GM, Manyam RR, Marappan R, Raju SK, et al. Design and Analysis of a Deep Learning Ensemble Framework Model for the Detection of COVID-19 and Pneumonia Using Large-Scale CT Scan and X-ray Image Datasets. Bioengineering. 2023;10.

Alshmrani GMM, Ni Q, Jiang R, Pervaiz H, Elshennawy NM. A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. Alexandria Eng J [Internet]. 2023;64:923–35. Available from: https://doi.org/10.1016/j.aej.2022.10.053

El Asnaoui K. Design ensemble deep learning model for pneumonia disease classification. Int J Multimed Inf Retr [Internet]. 2021;10:55–68. Available from: https://doi.org/10.1007/s13735-021-00204-7

Salehi AW, Khan S, Gupta G, Alabduallah BI, Almjally A, Alsolai H, et al. A Study of CNN and Transfer Learning in Medical Imaging: Advantages, Challenges, Future Scope. Sustainability [Internet]. 2023;15. Available from: https://www.mdpi.com/2071-1050/15/7/5930

Raza N, Naseer A, Tamoor M, Zafar K. Alzheimer Disease Classification through Transfer Learning Approach. Diagnostics [Internet]. 2023;13. Available from: https://www.mdpi.com/2075-4418/13/4/801

Deng J, Dong W, Socher R, Li L-J, Kai Li, Li Fei-Fei. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conf Comput Vis Pattern Recognit. 2010;248–55.

Tan M, Le Q V. EfficientNet: Rethinking model scaling for convolutional neural networks. 36th Int Conf Mach Learn ICML 2019. 2019;2019-June:10691–700.

Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022;2022-June:11966–76.

Raza R, Zulfiqar F, Khan MO, Arif M, Alvi A, Iftikhar MA, et al. Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. Eng Appl Artif Intell [Internet]. 2023;126:106902. Available from: https://doi.org/10.1016/j.engappai.2023.106902

Baheti B, Innani S, Gajre S, Talbar S. Eff-UNet: A novel architecture for semantic segmentation in unstructured environment. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work. 2020;2020-June:1473–81.

Jie Y, Ji X, Yue A, Chen J, Deng Y, Chen J, et al. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. Energies [Internet]. 2020;13. Available from: https://www.mdpi.com/1996-1073/13/24/6742

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC. MobileNetV2: Inverted Residuals and Linear Bottlenecks. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018;4510–20.

Chollet F. Xception: Deep learning with depthwise separable convolutions. Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017. 2017;2017-Janua:1800–7.

Fırat H. Classification of microscopic peripheral blood cell images using multibranch lightweight CNN-based model. Neural Comput Appl. 2023;

Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation Networks. IEEE Trans Pattern Anal Mach Intell. 2020;42:2011–23.

Firat H, Üzen H. Detection of Pneumonia Using A Hybrid Approach Consisting of MobileNetV2 and Squeeze- and-Excitation Network. Turkish J Nat Sci. 2024;13:54–61.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. IEEE Computer Society; 2016. p. 770–8.

Zoph B, Le Q V. Searching for activation functions. 6th Int Conf Learn Represent ICLR 2018 - Work Track Proc. 2018;1–13.

Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. 32nd Int Conf Mach Learn ICML 2015. 2015;1:448–56.

Salehin I, Kang DK. A Review on Dropout Regularization Approaches for Deep Neural Networks within the Scholarly Domain. Electron. 2023;12.

Tian G, Wang Z, Wang C, Chen J, Liu G, Xu H, et al. A deep ensemble learning-based automated detection of COVID-19 using lung CT images and Vision Transformer and ConvNeXt. Front Microbiol. 2022;13.

Hendrycks D, Gimpel K. Gaussian Error Linear Units (GELUs). 2016;1–10. Available from: http://arxiv.org/abs/1606.08415

Chaithanya BN, Swasthika Jain TJ, Usha Ruby A, Parveen A. An approach to categorize chest X-ray images using sparse categorical cross entropy. Indones J Electr Eng Comput Sci. 2021;24:1700–10.

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3rd Int Conf Learn Represent ICLR 2015 - Conf Track Proc. 2015;1–14.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016;2016-Decem:2818–26.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017. 2017;2017-Janua:2261–9.

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017; Available from: http://arxiv.org/abs/1704.04861

Comments (0)

No login
gif