Gu K, Cowie CC, Harris MI. Diabetes and decline in heart disease mortality in US adults. JAMA. 1999;281(14):1291–7. https://doi.org/10.1001/jama.281.14.1291.
Article PubMed CAS Google Scholar
Mosenzon O, Cheng AY, Rabinstein AA, Sacco S. Diabetes and stroke: what are the connections? J Stroke. 2023;25(1):26–38. https://doi.org/10.5853/jos.2022.02306.
Article PubMed PubMed Central Google Scholar
Aronson D, Edelman ER. Coronary artery disease and diabetes mellitus. Cardiol Clin. 2014;32(3):439–55. https://doi.org/10.1016/j.ccl.2014.04.001.
Article PubMed PubMed Central Google Scholar
Gu D, Qu J, Zhang H, Zheng Z. Revascularization for coronary artery disease: principle and challenges. Adv Exp Med Biol. 2020;1177:75–100. https://doi.org/10.1007/978-981-15-2517-9_3.
Article PubMed CAS Google Scholar
Frye RL, Bell MR, Schaff HV, Holubkov R, Detre KM. The role of PCI and CABG in the management of coronary artery disease in patients with diabetes. Curr Diab Rep. 2002;2(1):16–20. https://doi.org/10.1007/s11892-002-0052-z.
McAlister FA, Man J, Bistritz L, Amad H, Tandon P. Diabetes and coronary artery bypass surgery: an examination of perioperative glycemic control and outcomes. Diabetes Care. 2003;26(5):1518–24. https://doi.org/10.2337/diacare.26.5.1518.
van Straten AH, Soliman Hamad MA, van Zundert AA, et al. Diabetes and survival after coronary artery bypass grafting: comparison with an age- and sex-matched population. Eur J Cardiothorac Surg. 2010;37(5):1068–74. https://doi.org/10.1016/j.ejcts.2009.11.042.
Muir CA, Greenfield JR, MacDonald PS. Empagliflozin in the management of diabetes mellitus after cardiac transplantationResearch Correspondenceretain–>. J Heart Lung Transplant. 2017;36(8):914–6. https://doi.org/10.1016/j.healun.2017.05.005.
Sammour Y, Nassif M, Magwire M, et al. Effects of GLP-1 receptor agonists and SGLT-2 inhibitors in heart transplant patients with type 2 diabetes: initial report from a cardiometabolic center of excellence. J Heart Lung Transplant. 2021;40(6):426–9. https://doi.org/10.1016/j.healun.2021.02.012.
Brown E, Heerspink HJL, Cuthbertson DJ, Wilding JPH. SGLT2 inhibitors and GLP-1 receptor agonists: established and emerging indications. Lancet. 2021;398(10296):262–76. https://doi.org/10.1016/s0140-6736(21)00536-5.
Article PubMed CAS Google Scholar
Iorga RA, Bacalbasa N, Carsote M, et al. Metabolic and cardiovascular benefits of GLP-1 agonists, besides the hypoglycemic effect (Review). Exp Ther Med. 2020;20(3):2396–400. https://doi.org/10.3892/etm.2020.8714.
Article PubMed PubMed Central CAS Google Scholar
Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44. https://doi.org/10.1056/NEJMoa1607141.
Article PubMed CAS Google Scholar
Kushner P, Anderson JE, Simon J, et al. Efficacy and safety of tirzepatide in adults with type 2 diabetes: a perspective for primary care providers. Clin Diabetes. 2023;41(2):258–72. https://doi.org/10.2337/cd22-0029.
Rodriguez PJ, Goodwin Cartwright BM, Gratzl S, et al. Semaglutide vs tirzepatide for weight loss in adults with overweight or obesity. JAMA Intern Med. 2024;184(9):1056–64. https://doi.org/10.1001/jamainternmed.2024.2525.
Article PubMed PubMed Central CAS Google Scholar
Cervantes M, Miles B, Mehta A. Comparison of cardiovascular outcomes in patients with diabetes treated with tirzepatide versus semaglutide: a multi-institutional analysis. Eur Heart J. 2024. https://doi.org/10.1093/eurheartj/ehae666.2907.
Yang Y, He L, Liu P, et al. Impact of a dual glucose-dependent insulinotropic peptide/glucagon-like peptide-1 receptor agonist tirzepatide on heart rate among patients with type 2 diabetes: a systematic review and pairwise and network meta-analysis. Diabetes Obes Metab. 2024;26(2):548–56. https://doi.org/10.1111/dom.15342.
Article PubMed CAS Google Scholar
Chuang M-H, Chen J-Y, Wang H-Y, Jiang Z-H, Wu V-C. Clinical outcomes of tirzepatide or GLP-1 receptor agonists in individuals with type 2 diabetes. JAMA Netw Open. 2024;7(8):e2427258. https://doi.org/10.1001/jamanetworkopen.2024.27258.
Article PubMed PubMed Central Google Scholar
Hankosky ER, Wang H, Neff LM, et al. Tirzepatide reduces the predicted risk of atherosclerotic cardiovascular disease and improves cardiometabolic risk factors in adults with obesity or overweight: SURMOUNT-1 post hoc analysis. Diabetes Obes Metab. 2024;26(1):319–28. https://doi.org/10.1111/dom.15318.
Article PubMed CAS Google Scholar
Frías JP, Davies MJ, Rosenstock J, et al. Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med. 2021;385(6):503–15. https://doi.org/10.1056/NEJMoa2107519.
Cullinane C, Fullard A, Croghan SM, Elliott JA, Fleming CA. Effect of obesity on perioperative outcomes following gastrointestinal surgery: meta-analysis. BJS Open. 2023. https://doi.org/10.1093/bjsopen/zrad026.
Article PubMed PubMed Central Google Scholar
Dincer A, Tabor JK, Pappajohn AF, et al. Morbid obesity and diabetes increase the risk of reoperation following microvascular decompression: a national surgical quality improvement program analysis of 1,303 patients. J Neurol Surg B Skull Base. 2025;86(2):234–42. https://doi.org/10.1055/a-2263-1778.
Grossen AA, Shi HH, O’Neal CM, Bauer AM. Impact of obesity and diabetes on postoperative outcomes following surgical treatment of nontraumatic subarachnoid hemorrhage: analysis of the ACS-NSQIP database. World Neurosurg. 2022;163:e290–300. https://doi.org/10.1016/j.wneu.2022.03.113.
Zhang X, Hou A, Cao J, et al. Association of diabetes mellitus with postoperative complications and mortality after non-cardiac surgery: a meta-analysis and systematic review. Front Endocrinol (Lausanne). 2022;13:841256. https://doi.org/10.3389/fendo.2022.841256.
Sattar N, McGuire DK, Pavo I, et al. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med. 2022;28(3):591–8. https://doi.org/10.1038/s41591-022-01707-4.
Article PubMed PubMed Central CAS Google Scholar
Dani SS, Makwana B, Khadke S, et al. An observational study of cardiovascular outcomes of tirzepatide vs glucagon-like peptide-1 receptor agonists. JACC Adv. 2025;4(5):101740. https://doi.org/10.1016/j.jacadv.2025.101740.
Article PubMed PubMed Central Google Scholar
Nicholls SJ, Bhatt DL, Buse JB, et al. Comparison of tirzepatide and dulaglutide on major adverse cardiovascular events in participants with type 2 diabetes and atherosclerotic cardiovascular disease: SURPASS-CVOT design and baseline characteristics. Am Heart J. 2024;267:1–11. https://doi.org/10.1016/j.ahj.2023.09.007.
Article PubMed CAS Google Scholar
Watkins AR, Fialka N, El-Andari R, et al. Effect of glucagon-like peptide-1 receptor agonists administration during coronary artery bypass grafting: a systematic review and meta-analysis of randomized control trials. Future Cardiol. 2023;19(2):105–15. https://doi.org/10.2217/fca-2022-0093.
Article PubMed CAS Google Scholar
Harik L, Perezgrovas-Olaria R, Soletti G Jr, et al. Graft thrombosis after coronary artery bypass surgery and current practice for prevention. Front Cardiovasc Med. 2023;10:1125126. https://doi.org/10.3389/fcvm.2023.1125126.
Article PubMed PubMed Central CAS Google Scholar
Hosseini E, Ahmadi J, Kargar F, Ghasemzadeh M. Coronary artery bypass grafting (CABG) induces pro-inflammatory and immunomodulatory phenotype of platelets in the absence of a pro-aggregatory state. Microvasc Res. 2024;153:104669.
Comments (0)